二叉树学习——day2

从深度遍历序列还原二叉树

1. 理论基础
  • 为什么需要两种遍历序列

    • 在二叉树中,任何一个单独的遍历序列(无论是前序、中序还是后序)都不足以唯一地确定一棵二叉树的确切结构。例如,不同的树可能有相同的前序遍历结果。
    • 结合两种遍历序列(通常是前序和中序,或后序和中序),可以唯一地确定二叉树的结构。这是因为中序遍历确定了节点之间的相对位置,而前序或后序遍历则提供了关于根节点位置的关键信息。
  • 序列间的关系和特点

    • 前序遍历(根-左-右):首先记录根节点,然后递归遍历左子树,最后递归遍历右子树。根节点总是遍历序列的第一个元素。
    • 中序遍历(左-根-右):首先递归遍历左子树,然后记录根节点,最后递归遍历右子树。这种遍历方式为我们提供了节点在树中的顺序。
    • 后序遍历(左-右-根):首先递归遍历左子树,然后递归遍历右子树,最后记录根节点。根节点在遍历序列的最后一个。
2. 从前序和中序遍历序列还原
  • 算法步骤

    1. 在前序遍历中查找根节点(序列的第一个元素)。
    2. 在中序遍历中定位根节点,这将序列分为左子树和右子树的中序遍历部分。
    3. 根据中序遍历中左、右子树的长度,将前序遍历序列分割为对应的左、右子树的前序遍历部分。
    4. 对左、右子树分别递归执行以上步骤,直到所有子树都被构建完毕。
  • 实现代码(Python):

    class TreeNode:
        def __init__(self, val=0, left=None, right=None):
            self.val = val
            self.left = left
            self.right = right
    
    def buildTree(preorder, inorder):
        if not preorder or not inorder:
            return None
    
        # 根节点是前序遍历的第一个元素
        root = TreeNode(preorder[0])
        # 在中序遍历中找到根节点的位置
        mid_idx = inorder.index(preorder[0])
    
        # 递归构建左子树和右子树
        root.left = buildTree(preorder[1: mid_idx + 1], inorder[:mid_idx])
        root.right = buildTree(preorder[mid_idx + 1:], inorder[mid_idx + 1:])
    
        return root
    
  • 示例分析

    • 给定前序遍历序列 [3, 9, 20, 15, 7] 和中序遍历序列 [9, 3, 15, 20, 7],步骤如下:
      1. 前序中的第一个元素 3 是根节点。
      2. 在中序遍历中找到 3,将序列分为 [9](左子树)和 [15, 20, 7](右子树)。
      3. 递归地对左子树和右子树应用相同的过程。
3. 从后序和中序遍历序列还原
  • 算法步骤

    1. 在后序遍历中查找根节点(序列的最后一个元素)。
    2. 在中序遍历中定位根节点,这将序列分为左子树和右子树的中序遍历部分。
    3. 根据中序遍历中左、右子树的长度,将后序遍历序列分割为对应的左、右子树的后序遍历部分。
    4. 对左、右子树分别递归执行以上步骤。
  • 实现代码(Python):

    def buildTreeFromPostIn(postorder, inorder):
        if not postorder or not inorder:
            return None
    
        # 根节点是后序遍历的最后一个元素
        root = TreeNode(postorder[-1])
        # 在中序遍历中找到根节点的位置
        mid_idx = inorder.index(postorder[-1])
    
        # 递归构建左子树和右子树
        root.left = buildTreeFromPostIn(postorder[:mid_idx], inorder[:mid_idx])
        root.right = buildTreeFromPostIn(postorder[mid_idx:-1], inorder[mid_idx + 1:])
    
        return root
    
  • 示例分析

    • 给定后序遍历序列 [9, 15, 7, 20, 3] 和中序遍历序列 [9, 3, 15, 20, 7],步骤如下:
      1. 后序中的最后一个元素 3 是根节点。
      2. 在中序遍历中找到 3,将序列分为 [9](左子树)和 [15, 20, 7](右子树)。
      3. 递归地对左子树和右子树应用相同的过程。
还原二叉树的挑战与解决方案
  • 处理重复元素

    • 当树中存在重复元素时,仅根据值来确定节点位置可能导致错误。解决这个问题的一种方式是确保每个节点在树中具有唯一的标识符或使用额外的数据结构来保持节点间的关系。
  • 优化性能

    • 缓存中序遍历中节点的索引:为了避免在中序遍历中多次搜索节点的位置,可以先遍历一遍中序序列,将每个值及其索引存储在哈希表中,这样在后续操作中可以实现O(1)的查找时间复杂度。
    • 迭代方法:在某些情况下,使用迭代方法而不是递归可以减少内存的使用,尤其是在处理大型树时。这通常涉及使用栈或其他数据结构来模拟递归过程。

二叉搜索树(BST)

1. BST的定义与特性
  • 定义

    • 二叉搜索树(BST)是一种具有特殊属性的二叉树。在BST中,每个节点的左子树只包含比该节点小的值,而每个节点的右子树只包含比该节点大的值。
  • BST与普通二叉树的比较

    • 结构差异:普通二叉树对节点的排列没有特殊要求,而BST强制执行特定的排序规则。
    • 查找效率:BST的这种排列方式使得查找操作非常高效(平均情况下为O(log n)),而普通二叉树的查找效率较低(最坏情况下为O(n))。
    • 应用场景:BST适用于需要频繁查找、插入和删除的场景,普通二叉树则没有这些操作的性能优势。
2. BST的操作
  • 插入操作

    • 插入操作需要保证BST的特性不被破坏。
    • 算法步骤:从根节点开始,如果插入值小于当前节点,则移至左子节点,否则移至右子节点,重复此过程直至找到合适的插入位置。
  • 搜索操作

    • 搜索操作利用BST的排序特性来快速定位节点。
    • 算法步骤:从根节点开始,根据搜索值与当前节点值的比较结果决定向左子树还是右子树搜索,重复此过程直至找到目标值或遍历结束。
  • 删除操作

    • 删除操作是BST中最复杂的操作之一,因为它可能需要重新排列部分树结构。
    • 算法步骤:首先定位要删除的节点。如果节点是叶子节点,则直接删除;如果节点有一个子节点,则用其子节点替换它;如果有两个子节点,则用其右子树的最小节点(或左子树的最大节点)替换它。
3. BST的应用场景
  • 实际应用案例分析
    • 数据库:许多数据库系统使用BST(或其变种)来存储数据,实现高效的查询和更新操作。
    • 查找引擎:用于索引和快速检索数据。
    • 动态数据集:在需要频繁插入和删除的动态数据集中,BST提供了高效的处理方法。
4. BST的优化
  • 平衡二叉搜索树的介绍
    • AVL树:是最早的自平衡二叉搜索树之一。在AVL树中,任何节点的两个子树的高度差最多为1,这有助于保持树的平衡,确保操作的效率。
    • 红黑树:是另一种自平衡二叉搜索树。它通过确保树从根到叶子的最长路径不超过最短路径的两倍来保持近似平衡。
    • 优化效果:这些平衡树通过保持树的平衡状态来优化BST的性能,尤其是在极端情况下,比如插入顺序数据时,防止BST退化成链表。
  • 16
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值