参考3DGS在服务器上运行的环境搭建_3dgs tensorboard-CSDN博客
选用的24G的3090
环境配置根据官方代码来https://github.com/graphdeco-inria/gaussian-splatting/blob/main/environment.yml
torch1.12.1 cuda11.6
先把code clone到你的/hy-tmp
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
cd gaussian-splatting
因为你选环境的时候选好了torch1.12.1 cuda11.6 不用再create一个新的环境
直接在base里面即可实现
把和3DGS要求的相关的C++的装上
sudo apt-get update
sudo apt install build-essential
sudo apt-get install ninja-build
装submodule
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
把剩余的依赖包都装上 很快
pip install plyfile tensorboard tqdm six numpy==1.22
pip install opencv-python
pip install opencv-contrib-python
下载官网的| T&T+DB COLMAP (650MB)数据集
把里面的卡车数据集下载到本地 然后打包成zip文件 通过oss传到恒源云云端数据
具体方法搜“恒源云oss上传数据”
在你的jupyernotebook里面新建一个data包 把卡车数据集放到里面并解压
可以参考恒源云的上传下载以及迁移数据-CSDN博客
然后开始训练
python train.py -s ./data/truck
训练结果在你的output文件夹下
可视化方法
1.在linux云端可视化 要下很多包 很可能环境不匹配失败
2.下载文件到win本地 然后用官方文件给的Viewer for Windows这个app看
具体网上有很多教程
但是我的3060会闪退 可能是性能不够吧。。
3.用supersplat线上看 导入你的ply文件即可 记得设置splat模式和隐藏splat效果如上