- 博客(97)
- 问答 (5)
- 收藏
- 关注
原创 SQL注入攻击原理与防御全解析
SQL注入是一种常见的网络攻击手段,通过向Web应用程序输入恶意SQL代码来非法操作数据库。文章系统分析了SQL注入的原理、实现方式、危害及预防措施。SQL注入的本质是将用户输入数据当作代码执行,攻击者可借此窃取敏感数据、破坏数据库或获取系统控制权。常见的注入方式包括数字/字符型注入、盲注、联合查询等。预防措施包括严格输入验证、使用预编译语句、最小权限原则和定期安全测试。文章强调,随着网络威胁加剧,采取多重防护措施对保障Web应用安全至关重要。
2025-06-09 08:00:00
2911
28
原创 基于Scala实现Flink的三种基本时间窗口操作
摘要: 该代码展示了Apache Flink中的三种流联结操作:窗口联结(WindowJoin)、间隔联结(IntervalJoin)和窗口同组联结(CoGroup)。窗口联结通过TumblingEventTimeWindows实现5秒滚动窗口的键值匹配;间隔联结处理订单和点击事件的时序关联,使用between方法定义前后时间范围;同组联结则对窗口内的数据进行分组处理。代码优化包括改进时间戳处理(使用WatermarkStrategy)、调整并行度和优化输出格式,增强了处理乱序事件的能力和可读性。三种联结方
2025-06-07 10:47:36
756
2
原创 Scala任务类优化与泛型实战
摘要:本文分析了一个Scala可序列化Task类,它包含数据列表和转换逻辑。原代码存在数据/逻辑硬编码问题。优化后实现采用泛型支持多种数据类型,通过伴生对象提供工厂方法,并新增并行计算、数据转换和逻辑组合功能。改进后的设计增强了灵活性,保持了类型安全,同时建议进一步添加错误处理、分布式计算等特性。示例展示了整数和字符串任务的处理过程,体现了更强的通用性和可扩展性。
2025-06-06 07:00:00
571
1
原创 Scala网络编程:高性能服务器优化实践
本文分析了一个Scala实现的TCP服务器代码,该服务器接收客户端发送的序列化任务对象并执行计算。原代码存在单线程处理、异常处理不足、资源管理不可靠等问题。优化方案包括:使用Scala的Using类自动管理资源,引入Future和线程池实现异步处理,增强类型安全和异常处理,改进服务器生命周期管理。建议进一步增加结果返回功能、参数配置化、日志系统等改进措施。优化后的代码提升了服务器并发能力、可靠性和可维护性,支持持续运行和多客户端处理。
2025-06-05 08:00:00
797
1
原创 Scala可序列化分布式任务优化详解
摘要:本文分析了Scala中一个可序列化的SubTask子任务类,用于分布式计算。原代码存在空值风险、可变状态等问题,优化后版本通过引入不可变性、泛型支持、错误处理和并行计算等特性增强了可靠性。改进包括:使用val字段和访问器、Try封装结果、泛型参数A、computeParallel方法,以及伴生对象的工厂方法。示例展示了整数和字符串任务的使用,包括逻辑组合和并行计算。建议进一步增加分布式支持、资源管理和监控功能。优化后的设计更加安全、灵活,适用于多种计算场景。
2025-06-05 07:30:00
872
1
原创 MySQL DQL全面解析:从入门到精通
MySQL数据查询语言(DQL)是数据库操作的核心技能,本文全面解析了SELECT语句的用法。首先介绍了基础查询语法,然后深入讲解了WHERE子句的数据过滤、ORDER BY的结果排序以及COUNT/SUM/AVG等聚合函数的使用。文章还详细说明了GROUP BY分组查询和HAVING条件筛选,并重点阐述了INNER JOIN、LEFT JOIN等多表连接方法。最后介绍了嵌套查询的子查询技术,帮助开发者处理复杂查询场景。通过掌握这些DQL核心功能,可以高效地从MySQL中检索和分析数据。
2025-06-04 08:00:00
4134
38
原创 Scala优化TCP服务器实现与任务处理
本文分析了Scala实现的TCP服务器程序,该程序接收客户端发送的序列化任务对象并执行计算。原代码存在单线程处理、异常处理不足和资源管理风险等问题。优化方案采用Scala的Using类自动管理资源,增强异常处理,支持多客户端连接,并通过模式匹配提升类型安全。服务器持续运行并处理多个请求,避免了强制类型转换的风险。文章还建议进一步优化方向,如引入线程池、结果返回功能和配置化参数等,以提高服务器并发性能、可靠性和可维护性。该设计适用于分布式计算框架的计算节点场景。
2025-06-03 08:00:00
559
1
原创 Scala网络编程:任务拆解与TCP通信解析
这篇Scala代码实现了一个分布式任务分解客户端,通过TCP协议将任务拆分发送到不同服务器。代码建立了两个Socket连接(端口9999和8888),使用ObjectOutputStream将Task对象拆分为两个SubTask(分配不同数据段)分别序列化发送。分析包含网络通信原理(TCP/Socket)、对象序列化机制(需实现Serializable),指出潜在问题如资源管理不足、缺乏异常处理、数据拆分假设等,并建议改进方案。推测了Task/SubTask类结构,展示了分布式计算中常见的任务分解处理模式。
2025-06-03 07:00:00
744
原创 MySQL DDL操作全解析:从入门到精通,包含索引视图分区表等全操作解析
本文全面介绍了MySQL数据定义语言(DDL)的核心知识与应用技巧。主要内容包括:DDL基础概念与语法分类、数据库与表的创建修改操作、约束与索引管理、视图与分区表用法、事务与原子DDL特性。重点讲解了MySQL 8.0+的高级功能如在线DDL、原子操作和性能优化策略,并提供了权限管理、常见问题解决方案及工具推荐。文章强调应根据MySQL版本和业务场景选择合适的DDL方式,遵循最小权限和安全实践原则,通过合理使用分区、索引等特性提升数据库性能与稳定性。
2025-06-02 11:34:37
1882
29
原创 学院校园网三层架构详解配置实战:从拓扑到策略全解析
本文详细介绍了太原学院校园网的网络架构设计与部署方案。该系统采用经典三层架构:核心层(S1)运行OSPF动态路由,汇聚层(S2/S3)实现VLAN划分,接入层(S4-S7)完成终端接入。网络部署了6个功能VLAN(含教学区与宿舍区)、DHCP自动分配、NAT地址转换及ACL访问控制策略。重点配置包括:出口路由器R1的OSPF路由与NAT映射、核心交换机S1的VLAN间路由、汇聚层交换机的DHCP服务,以及基于ACL的FTP访问控制。通过功能验证表明,系统实现了跨VLAN通信、内外网访问及安全隔离等需求,为校
2025-06-02 08:00:00
1168
原创 Spark核心:单跳转换率计算全解析
摘要:该Spark程序旨在计算指定页面之间的单跳转换率,但存在多个逻辑问题。主要问题包括:分子计算中硬编码过滤条件导致仅统计(1,2)页面对;分母计算遗漏最后一个页面;转换率计算未完成且变量引用错误。建议改进方案包括:动态生成页面对、完善过滤条件、处理除零情况、优化代码结构与性能。修正后的代码应支持任意页面列表,正确统计跳转次数与访问次数,安全计算转换率,并具备更好的可读性和扩展性。测试时需验证边界条件和大数据处理能力。
2025-05-31 08:00:00
537
1
原创 Spark计算单跳页面转换率
摘要:该Spark程序实现网站页面单跳转换率计算,分析用户从页面A跳转至页面B的概率。核心流程包括:1) 读取用户访问日志;2) 通过fenzi函数统计连续页面对跳转次数(分子);3) 通过fenmu函数统计各页面总访问量(分母);4) 计算转换率。代码存在字段索引错误,建议修正数据提取逻辑(用户ID索引0,页面ID索引2),并优化为广播变量避免Driver内存压力。扩展功能可支持多跳路径分析和用户分群统计。程序采用本地模式运行,适用于用户行为分析场景。
2025-05-31 07:00:00
973
原创 Spark广播变量实战:高效共享数据技巧
本文介绍了一个基于Apache Spark的键值对处理示例,重点演示了广播变量的使用。代码创建包含键值对的RDD和相同内容的可变Map,将Map封装为广播变量后,在RDD操作中高效引用。通过map转换将每个键的原值与广播值组合输出。文中详细解析了代码执行流程,并拓展了广播变量的原理(优化只读数据共享)、闭包问题及解决方案、RDD惰性计算机制等核心概念,最后建议使用不可变集合提升安全性。该示例展示了Spark如何通过广播变量减少网络传输,适用于共享配置等场景。
2025-05-30 08:00:00
679
原创 Spark热门前十品类分析实战
摘要:该Spark应用程序通过分析用户访问日志,统计各品类点击、下单和支付次数,筛选出热门前十品类。使用RDD操作包括filter、map、reduceByKey进行数据筛选和聚合,cogroup合并三种行为数据,sortBy排序后取前十结果。代码优化建议包括RDD缓存避免重复计算、调整并行度提升性能等。改进了日志级别设置和异常处理机制,适用于大规模数据处理场景。
2025-05-30 08:00:00
1353
原创 链路聚合:带宽翻倍与高可用方案
链路聚合(Link Aggregation)是一种将多条物理链路捆绑为单一逻辑链路的技术,可提升网络带宽、可靠性和负载均衡能力。文章介绍了两种实现模式:手工模式直接配置端口绑定;LACP模式通过协议动态协商,支持故障自动切换。通过eNSP实验演示了两种模式的详细配置流程,并验证了故障转移功能。关键点包括:成员接口参数需一致、LACP优先级设置影响主设备选举、最大活跃链路数控制负载分配。该技术能有效优化网络性能,当单链路故障时可无缝切换至备用链路,保障业务连续性。实验结果表明链路聚合在提升带宽利用率的同时增强
2025-05-29 08:00:00
644
原创 Spark自定义累加器实现高效WordCount
该文章介绍了一个基于Apache Spark自定义累加器的单词计数实现。程序通过继承AccumulatorV2类,创建MyAccumulator自定义累加器来统计RDD中单词出现次数,核心包括主程序创建RDD、注册累加器、遍历累加等步骤,以及自定义类中的add、merge等关键方法实现。文章还解析了Spark累加器的工作原理(分布式聚合、线程安全等),对比了AccumulatorV2和V1的区别,并提出了扩展多词统计、线程安全优化等改进建议。最后总结了累加器适用于全局计数、分组统计等分布式聚合场景的特点。
2025-05-29 08:00:00
481
原创 数据库之两段锁协议相关理论及应用
两段锁协议(Two - Phase Locking Protocol,简称2PL)是数据库管理系统中用于事务处理的一种并发控制协议。它通过规定事务在读取和修改数据时获取锁的顺序和释放锁的时机,以确保事务的一致性和隔离性,避免并发事务之间的冲突,如丢失更新、脏读、不可重复读和幻读等问题。
2025-05-28 08:00:00
510
原创 Flink窗口操作全解析:从事件时间到会话窗口
本文介绍了如何使用Apache Flink进行窗口操作,详细解释了代码的各个部分。首先,导入了Flink相关的包,包括事件时间处理、窗口分配器、时间定义以及自定义的数据源ClickSource。接着,定义了主函数并获取了Flink的流执行环境。然后,从自定义的数据源获取数据,并为其分配时间戳和水位线。代码展示了多种窗口操作,包括基于事件时间的滚动窗口、基于处理时间的滚动窗口、基于事件时间的滑动窗口、基于事件时间的会话窗口以及滑动计数窗口。每种窗口操作都有其特点、适用场景和计算方式。此外,文章还拓展了窗口操作
2025-05-28 08:00:00
1686
原创 Flink窗口计算全解析:从基础到实战
本文详细介绍了使用Apache Flink进行窗口计算的代码示例及其相关原理。代码主要分为以下几个部分:包导入与数据模型定义、执行环境设置、数据源与时间戳分配、增量聚合函数(Reduce和Aggregate)、全窗口函数(WindowFunction和ProcessWindowFunction)以及增量聚合函数与全窗口函数的结合使用。通过这些示例,展示了如何在Flink中处理流数据,并利用不同的窗口函数和聚合函数进行数据计算。此外,文章还拓展了窗口计算的基础知识,包括窗口类型、时间语义、水位线、窗口分配器、
2025-05-27 08:30:00
1029
原创 Flink水位线策略详解与实战应用
本文详细介绍了在Apache Flink中使用水位线(Watermark)处理事件时间的示例代码及其相关原理。代码部分包括包导入与数据模型定义、执行环境设置、数据源创建、水位线生成策略演示(有序数据流、乱序数据流、自定义周期性水位线生成器)以及乱序数据水位线测试。水位线是Flink处理乱序事件的核心机制,通过时间戳表示后续不会再出现早于该时间戳的数据。Flink提供了多种水位线生成策略,如升序时间、有界乱序和自定义生成器。此外,文章还拓展了时间语义基础、窗口处理机制、并行流中的水位线、水位线的传播以及水位线
2025-05-27 08:00:00
826
原创 狂命爆肝21天,共51K字的JAVA学习笔记奉上,JAVA从入门到精通一文搞定,一文在手JAVA无忧
本文介绍了Java编程的基础知识、开发环境设置、JVM内存划分以及常用关键字。Java分为JavaSE、JavaEE和JavaME三个版本,分别用于桌面、企业和嵌入式系统开发。编译使用javac,运行使用java,JDK是开发工具包,JRE是运行环境,JVM是虚拟机。JVM内存分为堆、方法区和栈,分别存储实例变量、静态变量和局部变量。常用关键字包括public、static、final、this和super,分别用于定义类、静态成员、常量、当前对象引用和父类特征。开发环境IDEA的快捷键和组织方式也进行了总
2025-05-26 08:00:00
4526
78
原创 Flink流处理:高效应对迟到数据的三大策略
这段代码展示了如何使用Apache Flink处理流数据中的迟到数据。代码从本地socket端口接收数据,解析为Event对象,并通过Watermark机制处理乱序数据。主要功能包括:使用10秒的滚动事件时间窗口进行数据统计,设置窗口允许等待时间为1分钟以处理迟到数据,并将无法处理的迟到数据输出到侧输出流。代码还展示了如何通过Watermark、窗口允许等待时间和侧输出流三重保障来处理迟到数据。此外,文章还拓展了事件时间与Watermark的概念,讨论了不同窗口类型对迟到数据的处理差异,并强调了在实际应用中
2025-05-26 07:00:00
1302
原创 ESNP NAT 原理概述以及实战演练疑问搞懂NAT无忧
ESNP NAT 概述ESNP NAT(Enhanced Source Network Port NAT)是一种增强型源网络端口网络地址转换技术。它主要用于在复杂的网络环境中,通过修改数据包的源IP地址和端口号,来实现网络地址的转换和优化。ESNP NAT 通常用于负载均衡、流量管理、网络安全等场景。
2025-05-25 07:00:00
891
原创 ESNP之NAPT:网络地址转换的未来趋势
ESNP NAPT(Enhanced Source Network Port Network Address Port Translation)是一种增强型网络地址端口转换技术。它在传统 NAPT(Network Address Port Translation)的基础上,增加了对源端口和会话的动态管理,支持更复杂的网络场景,如负载均衡、会话保持和多租户隔离。
2025-05-25 07:00:00
857
原创 Flink流数据分流:Filter与侧输出流实战
本文介绍了如何使用Apache Flink对流数据进行分流操作,主要分为两种方式:filter和侧输出流(Side Output)。首先,通过filter将数据流按用户分为mary_stream、bob_stream和else_stream,但这种方式效率较低,因为需要多次遍历流。接着,使用侧输出流在ProcessFunction中实现分流,通过OutputTag定义侧输出流标签,并在processElement方法中将数据发送到不同的侧输出流。侧输出流只需遍历流一次,效率更高,适合处理大规模数据或复杂场景
2025-05-24 08:00:00
916
原创 Flink流处理实战:实时对账与双流连接
本文介绍了如何使用Apache Flink进行流处理,重点展示了如何通过connect操作符将两个流连接,并使用CoMapFunction和KeyedCoProcessFunction对这两个流进行处理。首先,设置了Flink的执行环境并创建了两个流,分别包含整数和双精度浮点数。接着,通过connect操作符将这两个流连接,并使用CoMapFunction对它们进行映射操作。然后,文章详细描述了一个实时对账场景,其中来自APP和第三方支付平台的两个支付日志流被连接,并通过KeyedCoProcessFunc
2025-05-24 07:00:00
733
原创 Flink流处理:窗口、间隔与同组联结实战
本文介绍了Apache Flink中三种常见的流联结操作:窗口联结(WindowJoin)、间隔联结(IntervalJoin)和窗口同组联结(CoGroup)。窗口联结用于在同一个时间窗口内匹配两个流中具有相同键的事件;间隔联结用于将一个流中的事件与另一个流中在指定时间范围内的事件进行匹配;窗口同组联结则用于在同一个时间窗口内对两个流中的事件进行分组处理。文章还探讨了这些联结操作的适用场景,如订单流与支付流的匹配、用户行为流与广告点击流的统计等。此外,文章还介绍了水位线的作用、处理函数的扩展以及性能优化的
2025-05-23 08:00:00
1714
原创 Flink流处理:Union操作与水位线详解
本文介绍了如何使用Apache Flink对多个流进行union操作,并处理流中的事件。首先,通过StreamExecutionEnvironment设置流处理环境,并从两个不同的Socket端口读取数据,将其解析为Event对象并分配时间戳。接着,使用union操作符将两个流合并为一个流,并通过ProcessFunction处理合并后的事件,输出当前水位线信息。文章还扩展了水位线的作用、union与connect的区别、处理多个流的场景、水位线的优化以及处理函数的扩展。最后,总结了如何通过ProcessF
2025-05-23 07:30:00
906
原创 MSTP:网络负载均衡与环路防护的利器
MSTP(多生成树协议)是IEEE 802.1s标准的一部分,用于防止网络环路并实现负载均衡。它扩展了STP和RSTP的功能,允许创建多个生成树实例(MSTI),每个实例独立管理一部分VLAN的流量,从而实现流量的负载均衡和网络资源的优化。MSTP通过划分MST区域、配置生成树实例和选举根桥来工作,具有快速收敛和扩展性强的优点。在ENSP中,可以通过配置MSTP区域、生成树实例和根桥来实现MSTP,并通过验证步骤确保配置的正确性和网络的连通性。
2025-05-22 08:00:00
1085
原创 Apache Flink物理分区算子全解析
本文介绍了Apache Flink中的物理分区算子,这些算子用于控制数据在并行任务之间的分发方式,以优化任务的并行执行和负载均衡。主要算子包括:1. Shuffle(随机分区):将数据随机分发到下游任务,适用于数据分布均匀的场景。2. Rebalance(轮询分区):均匀轮询分发数据,适用于需要均匀分布数据的场景。3. Rescale(分组轮询分区):在局部范围内轮询分发数据,适用于数据源和下游任务并行度不一致的场景。4. Broadcast(广播分区):将数据复制并广播到所有下游任务,适用于所有任务需要完
2025-05-22 08:00:00
755
原创 ENSP关于路由器与交换机ACL基础配置
ACL(Access Control List,访问控制列表)是网络设备中用于控制数据包转发的一种技术。通过 ACL,可以基于源 IP 地址、目的 IP 地址、协议类型、端口号等条件对数据包进行过滤或控制。在华为 ENSP(Enterprise Network Simulation Platform)中,ACL 的配置是网络管理的基础技能之一。
2025-05-21 08:00:00
952
1
原创 Flink单流转换算子实战解析
本文展示了如何在Apache Flink中使用单流转换算子进行数据处理。首先,通过StreamExecutionEnvironment初始化流处理环境,并设置并行度为1。接着,使用fromElements方法创建包含Event对象的流数据。随后,代码演示了多种转换算子的使用,包括Map、Filter、FlatMap、KeyBy、简单聚合(如max和maxBy)以及Reduce。此外,还介绍了如何使用RichMapFunction进行富函数类测试,并在任务执行前后打印任务索引号。最后,通过env.execut
2025-05-21 07:45:00
869
1
原创 华为高级ACL配置全攻略
高级 ACL(Advanced Access Control List)是比基本 ACL 更灵活的访问控制技术,它可以基于源 IP 地址、目的 IP 地址、协议类型、端口号等多维度条件对数据包进行过滤或控制。在华为 ENSP(Enterprise Network Simulation Platform)中,高级 ACL 的配置是网络管理的重要技能之一。
2025-05-20 08:00:00
757
1
原创 Flink并行数据源:ClickSource实现详解
这段代码定义了一个名为ClickSource的Flink数据源,实现了ParallelSourceFunction[Event]接口,用于生成模拟的用户点击事件流。ClickSource类通过run方法持续生成随机事件,包括用户、URL和时间戳,并通过sourceContext.collect(event)将事件发送到下游。事件生成频率通过Thread.sleep(1000)控制为每秒一次。cancel方法用于停止数据源。代码还提供了扩展建议,如增加事件类型、动态调整生成频率、事件过滤、聚合、序列化、重试机
2025-05-20 07:30:00
1137
原创 Flink流处理:实时计算URL访问量TopN(基于时间窗口)
本文介绍了如何使用Apache Flink处理流数据并计算每个时间窗口内URL的访问量TopN。代码首先通过StreamExecutionEnvironment获取执行环境,并设置并行度为1。接着从自定义的ClickSource获取模拟点击事件数据,并分配时间戳。通过TumblingEventTimeWindows定义了一个10秒大小、5秒步长的滚动窗口,并使用ProcessAllWindowFunction处理窗口内数据。在process方法中,统计每个URL的访问次数,按访问量降序排序并取前10个,最终
2025-05-19 08:00:00
806
原创 深入解析 Flink Job 优化技巧:让大数据处理更高效Flink Job 优化全攻略
本博客总结了B站尚硅谷关于Flink 2.0调优和性能优化的视频内容。主要内容包括:1)使用DataGen工具生成测试数据进行Flink作业的压测,通过积压Kafka数据并启动Flink任务来识别处理瓶颈;2)为Flink算子指定唯一用户ID(UUID),以确保状态管理和Savepoint恢复的准确性;3)通过LatencyMarker机制测量链路延迟,监控数据处理的及时性;4)开启对象重用以减少GC压力,但需确保下游Function的线程安全;5)优化细粒度滑动窗口的性能,通过滚动窗口+在线存储+读时聚合
2025-05-19 08:00:00
2686
35
原创 Flink流处理:温度跳变检测与状态管理
该代码是一个基于Apache Flink的流处理程序,主要用于检测传感器数据的温度跳变。程序从Socket读取数据流,并将其转换为SensorReading对象。通过KeyedState和FlatMapWithState实现温度跳变检测,当温度变化超过设定阈值时触发报警。状态管理使用ValueState保存上一次的温度值,并通过RichFlatMapFunction进行状态更新。程序还配置了检查点机制和重启策略,以确保容错性和可靠性。检查点配置包括检查点间隔、超时时间、并发检查点数等,重启策略支持固定延迟重
2025-05-18 08:00:00
955
原创 Flink流处理:温度阈值分流实战
这段代码展示了如何使用Apache Flink进行流处理,特别是通过ProcessFunction实现数据的分流。程序从Socket读取传感器数据,将其转换为SensorReading对象,并根据温度阈值将数据分为主输出流和侧输出流。主输出流(温度高于阈值)和侧输出流(温度低于或等于阈值)分别输出到控制台。代码的核心在于自定义的SplitTempProcessor类,它通过processElement方法实现数据的分流逻辑。此外,代码还提供了优化和扩展的建议,如异常处理、配置管理、并行度设置,以及将数据写入
2025-05-18 07:00:00
562
1
原创 Flink Table API与SQL流数据处理实战
这段代码展示了如何使用Apache Flink的Table API和SQL处理流数据。首先,通过StreamExecutionEnvironment获取流处理环境,并从文件中读取数据流。接着,将数据流转换为SensorReading对象,并打印输出。然后,创建StreamTableEnvironment,将数据流转换为表,并使用Table API进行筛选操作。同时,通过SQL查询实现相同功能,并将结果转换回数据流输出。最后,启动流处理任务。代码还介绍了Flink的Table API和SQL的优势、流与表的转
2025-05-17 08:00:00
811
原创 Flink事件时间与窗口操作实战指南
这段代码展示了如何使用Apache Flink进行流处理,特别是基于事件时间(EventTime)的数据处理。代码的主要步骤包括环境设置、数据源读取、数据转换、窗口操作以及结果输出。通过设置事件时间语义、生成水位线和处理乱序数据,代码实现了对传感器数据的实时处理。窗口操作包括滚动窗口、滑动窗口和会话窗口,允许处理迟到数据并将其写入侧输出流。最终,代码展示了如何对窗口内的数据进行聚合,并输出结果。这段代码是学习Flink流处理的基础示例,涵盖了事件时间、水位线、窗口操作等核心概念。
2025-05-17 07:00:00
1852
【数据库技术】MySQL安装包详细安装教程:环境变量配置与服务初始化流程指导
2025-06-03
nlpbasic.zip这是一个基于anaconda的自然语言处理教学与实践项目
2025-06-03
系统管理Linux系统进程与工作管理:进程查看、终止及系统资源监控方法汇总
2025-05-23
【计算机系统管理】Linux文件系统管理与维护:分区、文件系统及常用命令详解
2025-05-23
IT运维基于Zabbix的企业级服务器与应用全方位监控系统搭建及配置详解文档的主要内容
2025-05-23
【操作系统用户管理】Linux系统用户与组配置文件解析及常用管理命令汇总
2025-05-23
【Linux服务器配置】基于Nginx和MariaDB的PHP应用部署:论坛与用户中心系统搭建步骤详解
2025-05-23
【蓝桥杯智能体开发】基于对话型智能体的智能阅读助手设计:比赛规则与技术实现要点
2025-04-26
Java编程Java核心技术要点解析:基础语法、面向对象、集合框架、多线程与并发及Stream流操作介绍了Java编程语言
2025-04-24
【C语言编程】基础语法与核心概念详解:涵盖数据类型、函数、指针及数组应用了文档的主要内容
2025-04-24
测试题.docx【C语言教育】C语言考核测试题:涵盖选择题与程序设计题的综合评估系统
2025-04-24
【数据库管理】Mysql安装配置全流程:环境变量设置、服务安装与初始密码修改教程
2025-04-24
虚拟机为什么使用yum成功安装vim后,vim命令还是提示没有
2022-01-27
帮我看一下这是安装成功没
2022-01-28
mysql总是出现error 1064(4200)报错
2022-02-01
hadoop 使用java进行api开发FileSystem有空指针异常,如何解决?
2022-05-03
JDBC使用预编译执行DQL语句输出都是占位符内容,这是为什么呢?
2022-04-15
TA创建的收藏夹 TA关注的收藏夹
TA关注的人