算法设计中经典的0-1背包问题
这里背包问题的贪心算法的思路就用不了了
问题如下:
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或者不装入背包。不能将物品i装入背包多次,也不能只装入部分物品i。设计一个动态规划的算法解决此问题。
形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
递推关系:
设所给0-1背包问题子问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式:
上式此时背包容量为j,可选择物品为i。此时在对xi作出决策之后,问题可能处于两种状态:
(1)、背包剩余容量是j,没产生任何效益;
(2)、剩余容量j-wi,效益值增长了vi ;
关于这道题,其实就是利用动态规划的一种思想,解这道题有点类似冒泡,采用遍历数组序列,不断更新递增序列的长度以至于来找到最长单调递增序列。
代码实现如下:(C语言实现)
#include<stdio.h>
const int N = 4;
void Knapsack(int v[],int w[],int c,int n,int m[][10]);
void Traceback(int m[][10],int w[],int c,int n,int x[]);
int getMin(int a,int b);
int getMax(int a,int b);
int main()
{
int c=8;
int v[]= {0,2,1,4,3},w[]= {0,1,4,2,3}; //下标从1开始
int x[N+1];
int m[10][10];
printf("待装物品重量分别为:\n");
for(int i=1; i<=N; i++)
{
printf("%d ",w[i]);
}
puts("");
printf("待装物品价值分别为:\n");
for(int i=1; i<=N; i++)
{
printf("%d ",v[i]);
}
puts("");
Knapsack(v,w,c,N,m);
printf("背包能装的最大价值为:%d\n",m[1][c]);
Traceback(m,w,c,N,x);
printf("背包装下的物品编号为:\n");
for(int i=1; i<=N; i++)
{
if(x[i]==1)
{
printf("%d ",i);
}
}
puts("");
return 0;
}
void Knapsack(int v[],int w[],int c,int n,int m[][10])
{
int jMax = getMin(w[n]-1,c);//背包剩余容量上限 范围[0~w[n]-1]
for(int j=0; j<=jMax; j++)
{
m[n][j]=0;
}
for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]
{
m[n][j] = v[n];
}
for(int i=n-1; i>1; i--)
{
jMax = getMin(w[i]-1,c);
for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c
{
m[i][j] = m[i+1][j];//没产生任何效益
}
for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c
{
m[i][j] = getMax(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi
}
}
m[1][c] = m[2][c];
if(c>=w[1])
{
m[1][c] = getMax(m[1][c],m[2][c-w[1]]+v[1]);
}
}
//x[]数组存储对应物品0-1向量,0不装入背包,1表示装入背包
void Traceback(int m[][10],int w[],int c,int n,int x[])
{
for(int i=1; i<n; i++)
{
if(m[i][c] == m[i+1][c])
{
x[i]=0;
}
else
{
x[i]=1;
c-=w[i];
}
}
x[n]=(m[n][c])?1:0;
}
int getMin(int a,int b)
{
if(a>=b)
return b;
else
return a;
}
int getMax(int a, int b)
{
if(a>=b)
return a;
else
return b;
}
算法复杂性分析
算法的复杂性:O(nc)计算时间。当背包容量c很大时,算法需要的计算时间较多。例如,当c>2^n时,算法需要Ω(n2^n)计算时间。
还有阶跃性优化具体参照《算法设计与分析第五版》
链接: https://pan.baidu.com/s/1wzfrTUvP1GrVwaXElgbl5w
提取码: 3mk9