Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network(GECCO 2018最佳论文)
参考网址:https://www.sohu.com/a/243597299_610300
下面是本文提出的马里奥关卡生成的WGAN网络。用来生成Mario关卡
生成结果:
latent variable evolution (LVE)
用途:可以通过设置适应度函数,在隐变量空间中不断探索,输入到已训练好的生成器中,然后判断生成的图片是否符合适应度函数(eg:更多的敌人或者是A*能通过)
数据集
https://github.com/TheVGLC/TheVGLC/blob/master/Super%20Mario%20Bros/Original/mario-1-1.png
这个数据集里面还有其他关卡的图片,但是都比这个要复杂的多,比如有食人花等等。
目前只是在这1个关卡上做的
通过只在一个级别上进行训练,我们能够表明,即使在非常有限的数据集的情况下,我们也可以成功地应用所提出的方法。
一个样本就能训练???
会把这一个level按照28*14的比例切割,分成173个训练图像
注意事项
- 输入是一个32维向量
- 是根据已有数据集训练的
总结
这个生成器是后面RL关卡生成里面用到的生成器,包括之后所有的关卡生成都是用的这个生成器。但是这里存在两个问题:
- 生成的图片有Bug,不一定能完全满足规则约束;
- 由于是基于原有数据集做的,所以生成的关卡和原有数据集分布近似
想法
- 看了一下目前的mario生成似乎都只是在这个关卡上来做的,那其他关卡为什么没人做呢?可能会设计到其他的设置,不太方便?
A Novel CNet-assisted Evolutionary Level Repairer and Its Applications to Super Mario Bros(IEEE World Congress on Computational Intelligence)
这篇文章的期刊含金量有点低,主要是解决上面提到的关卡生成以后有破损的情况。用的是遗传算法,没有细看。