关于马里奥关卡生成的总结及细节说明

本文介绍了在深度卷积生成对抗网络中,通过隐变量演化生成马里奥关卡的方法。尽管使用有限数据集,但展示了有效应用潜力。然而,生成的关卡存在bug和与原始数据集近似的局限。后续工作探讨了如何修复生成的破损关卡,以及为何其他关卡生成未见于研究的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Evolving Mario Levels in the Latent Space of a Deep Convolutional Generative Adversarial Network(GECCO 2018最佳论文)

在这里插入图片描述

参考网址:https://www.sohu.com/a/243597299_610300
下面是本文提出的马里奥关卡生成的WGAN网络。用来生成Mario关卡
在这里插入图片描述
生成结果:
在这里插入图片描述

latent variable evolution (LVE)

用途:可以通过设置适应度函数,在隐变量空间中不断探索,输入到已训练好的生成器中,然后判断生成的图片是否符合适应度函数(eg:更多的敌人或者是A*能通过)

数据集

https://github.com/TheVGLC/TheVGLC/blob/master/Super%20Mario%20Bros/Original/mario-1-1.png
这个数据集里面还有其他关卡的图片,但是都比这个要复杂的多,比如有食人花等等。
目前只是在这1个关卡上做的
在这里插入图片描述

通过只在一个级别上进行训练,我们能够表明,即使在非常有限的数据集的情况下,我们也可以成功地应用所提出的方法。

一个样本就能训练???
会把这一个level按照28*14的比例切割,分成173个训练图像

注意事项

  • 输入是一个32维向量
  • 是根据已有数据集训练的

总结

这个生成器是后面RL关卡生成里面用到的生成器,包括之后所有的关卡生成都是用的这个生成器。但是这里存在两个问题:

  1. 生成的图片有Bug,不一定能完全满足规则约束;
  2. 由于是基于原有数据集做的,所以生成的关卡和原有数据集分布近似

想法

  • 看了一下目前的mario生成似乎都只是在这个关卡上来做的,那其他关卡为什么没人做呢?可能会设计到其他的设置,不太方便?
    在这里插入图片描述 在这里插入图片描述

A Novel CNet-assisted Evolutionary Level Repairer and Its Applications to Super Mario Bros(IEEE World Congress on Computational Intelligence)在这里插入图片描述

这篇文章的期刊含金量有点低,主要是解决上面提到的关卡生成以后有破损的情况。用的是遗传算法,没有细看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值