Python根号化简程序(开根号)

该程序使用Python通过while循环进行根号化简,寻找m和k的值使得m*m*k等于给定的n。首先计算m为n的平方根的整数部分,然后逐步减小m直到找到符合条件的m和k。对于不同情况,如m和k都是整数、只有m是整数或无法简化为整数形式,程序分别给出不同的输出结果。示例中,输入12时,输出为2倍的根号3。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上程序

n = int(input())

m = int(n**(1/2))   #int整数化一个根号外的范围
k = int(n/m/m)      #k为根号内的值
while m >= 1:       
    if m*m*k == n:  
        break
    m = m-1
    k = int(n/m/m)  #用while循环从大到小选出合适的m,n

if k == 1:          
    print(m)
elif m == 1:
    print(f"根号{n}")
else:
    print(f"{m}倍的根号{k}")   #分情况输出

思路

根号化简就是让被开根号数变成m*m*k的形式,m,k分别是根号内外的数,且m的值一定不大于开根号得出来的真实值。用while循环,如果能有m*m*k=n,则m,k刚好为根号内外的值,如果不符合,就让m-1继续实验。(例如根号12,先会得到m=3,k=1,显然m*m*k=n不成立,这样m就会自动-1变成2,k变为3,m*m*k=n成立,输出。)得到m,n后,分刚好化简为整数,没法化简,根号内外都有数值三种情况分别输出。

运行结果

12
2倍的根号3

进程已结束,退出代码0

请大家多多关照

谢谢阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值