第十三届蓝桥杯省赛第二场真题——K倍区间加强版(AC)

1.K倍区间

1.题目描述

一个整数序列 A = ( a 1 , a 2 , ⋯ , a n ) A=(a_1 ,a_2,⋯,a_n) A=(a1,a2,,an)的区间和为 S i , j = a i + a i + 1 + ⋯ + a j 。 S_{i,j} =a_i +a_{i+1} +⋯+a_j 。 Si,j=ai+ai+1++aj
给定整数序列 A A A 和一个正整数 k k k, 请问有多少个区间 [ i , j ] [i,j] [i,j]满足
1 ≤ i ≤ j ≤ n 1≤i≤j≤n 1ijn S i , j S_{i,j} Si,j k k k 非负整数倍。

2.输入格式

输入的第一行包含两个整数 n 、 k n、k nk, 用一个空格分隔。

第二行包含 n n n 个整数 a 1 ​ , a 2 ​ , ⋯ , a n a_1​ ,a_2​ ,⋯,a_n a1,a2,,an , 相邻的整数之间用一个空格分隔。

3.输出格式

输出一行包含一个数表示满足条件的区间数量。

4.样例输入

7 3
1 -1 0 2 2 2 -30

5.样例答案

7

6.数据范围

1 ≤ n ≤ 100000 , 1 ≤ k ≤ 1 0 9 , − 1 0 9 ≤ a i ≤ 1 0 9 1≤n≤100000,1≤k≤10^9,−10^9≤ai≤10^9 1n100000,1k109,109ai109

7.原题链接

k倍区间

2.解题思路

本题为原K倍区间的升级版,范围不仅变大且增加了负数,由于需要求得k的非负整数倍,我们需要进行分类讨论。

先求得数组 a a a 的前缀和数组 s s s,研究一段区间和是否为 k k k倍区间,其实本质就是求多少对下标 i , j i,j i,j 满足 ( s [ j ] − s [ i ] ) % k = = 0 (s[j]-s[i])\%k==0 (s[j]s[i])%k==0,当然需要满足 0 ≤ i < j ≤ n 0\leq i <j \leq n 0i<jn

我们从 s [ i ] s[i] s[i] s [ j ] s[j] s[j]的奇偶性去进行分类讨论:

  1. s [ i ] ≥ 0 s[i]\geq0 s[i]0 s [ j ] ≥ 0 s[j] \geq 0 s[j]0
    显然这种情况如果满足 a [ j ] % k = a [ i ] % k a[j]\%k=a[i]\%k a[j]%k=a[i]%k,也就是说两者对 k k k 的余数相同则说明我们找到了一对符合的下标,当然还得满足 s [ i ] ≤ s [ j ] s[i]\leq s[j] s[i]s[j]

  2. s [ i ] < 0 s[i]<0 s[i]<0 s [ j ] ≥ 0 s[j] \geq 0 s[j]0
    显然此时 s [ j ] − s [ i ] s[j]-s[i] s[j]s[i]一定是一个非负数,是有可能作为答案的,这种一正一负的情况显然不应该满足且不会满足 a [ j ] % k = a [ i ] % k a[j]\%k=a[i]\%k a[j]%k=a[i]%k。那么满足什么条件是合法的呢?显然手推一下可以发现如果满足
    s [ j ] % k − k = s [ i ] % k s[j]\%k-k=s[i]\%k s[j]%kk=s[i]%k
    那么 i , j i,j i,j 也是一对合法区间。

  3. s [ i ] ≥ 0 s[i]\geq0 s[i]0 s [ j ] < 0 s[j]<0 s[j]<0
    显然 s [ j ] − s [ i ] s[j]-s[i] s[j]s[i]一定为负数,一定不合法。

  4. s [ i ] ≤ 0 s[i]\leq0 s[i]0 s [ j ] ≤ 0 s[j]\leq0 s[j]0
    如果此时满足 s [ i ] < s [ j ] s[i]<s[j] s[i]<s[j] 且满足 s [ j ] % k = s [ i ] % k s[j]\%k=s[i]\%k s[j]%k=s[i]%k,那么 i , j i,j i,j符合要求。

经过讨论,显然我们必须做的一件事是需要将数组 s s s 按照对 k k k 的余数来进行分组。对于任意一组数 v v v,无论里面存的是负数还是正数,有多少对数满足 i < j i<j i<j v [ i ] ≤ v [ j ] v[i]\leq v[j] v[i]v[j] 则有多少答案,这个过程我们可以使用树状数组求解,但由于 v [ i ] v[i] v[i] 有可能特别大,每组数我们都需要先进行离散化处理。

分析中比较特殊的是第二种情况,对于每个非负的 s [ j ] s[j] s[j],我们还需要找到在它之前出现过多少个负数 s [ i ] s[i] s[i],满足 s [ j ] % k − k = s [ i ] % k s[j]\%k-k=s[i]\%k s[j]%kk=s[i]%k。那么我们还需要去分组存下标,然后去对应的组里二分去找一下有多少个 i i i 符合即可。

具体实现见代码。

3 Ac_code

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int, int> PII;
#define pb(s) push_back(s);
#define SZ(s) ((int)s.size());
#define ms(s,x) memset(s, x, sizeof(s))
#define all(s) s.begin(),s.end()
const int inf = 0x3f3f3f3f;
const int mod = 1000000007;
const int N = 200010;

int n, k;
template <typename T>
struct BIT {
    const int n;
    std::vector<T> a;
    BIT(int n) : n(n), a(n) {}
    void add(int x, T v) {
        for (int i = x; i <= n; i += i & -i) {
            a[i - 1] += v;
        }
    }
    T sum(int x) {
        T ans = 0;
        for (int i = x; i > 0; i -= i & -i) {
            ans += a[i - 1];
        }
        return ans;
    }
    T rangeSum(int l, int r) {
        return sum(r) - sum(l);
    }
};
void solve()
{
    cin >> n >> k;
    std::vector<LL> s(n + 1);
    map<int, std::vector<LL>> m;
    map<int, std::vector<int>> e;
    for (int i = 1; i <= n; ++i) {
        cin >> s[i];
        s[i] += s[i - 1];
    }
    for (int i = 0; i <= n; ++i) {
        m[s[i] % k].push_back(s[i]);
        e[s[i] % k].push_back(i);
    }
    LL ans = 0;
    for (auto [x, y] : m) {
        auto arr = y;
        sort(arr.begin(), arr.end());
        arr.erase(unique(arr.begin(), arr.end()), arr.end());
        BIT<int> tr(arr.size() + 1);
        if (x >= 0) {
            //正数减去正数
            for (auto v : y) {
                int t = lower_bound(arr.begin(), arr.end(), v) - arr.begin() + 1;
                ans += tr.sum(t);
                tr.add(t, 1);
            }
            //正数减去负数
            for (auto v : e[x]) {
                ans += upper_bound(all(e[x - k]), v) - e[x - k].begin();
            }
        } else {
            //负数减去负数
            for (auto v : y) {
                int t = lower_bound(arr.begin(), arr.end(), v) - arr.begin() + 1;
                ans += tr.sum(t);
                tr.add(t, 1);
            }
        }
    }
    cout << ans << '\n';
}
int main()
{
    ios_base :: sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    int t = 1;
    while (t--)
    {
        solve();
    }
    return 0;
}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

执 梗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值