给定平面上 n
对 互不相同 的点 points
,其中 points[i] = [xi, yi]
。回旋镖 是由点 (i, j, k)
表示的元组 ,其中 i
和 j
之间的距离和 i
和 k
之间的欧式距离相等(需要考虑元组的顺序)。
返回平面上所有回旋镖的数量。
解法与要点:
所谓回旋镖即为找出三个能形成等腰三角形的点在points中,因此以顶点为基准进行枚举查找是比较容易实现的。
1.首先遍历points,将遍历到的点作为三角形顶点,即为回旋镖的“拐点”。
2.随后遍历其他点,并使用哈希表存储其他点到该点的距离与该距离出现的次数。其中距离作为key,出现次数作为value。出现次数也就是该距离的点的数量。
3.因为题目要求考虑元组的顺序,因此需要在点数量中取出两个,是简单的排列组合m * (m-1)
class Solution:
def numberOfBoomerangs(self, points: List[List[int]]) -> int:
# 预设回旋镖数量
ans = 0
# 遍历数组中的点
for p in points:
# 创建哈希表来存放点到p的距离与该距离出现的次数
cnt = defaultdict(int)
# 当前点为p时遍历其余的点q
for q in points:
# dis为p到q的欧式距离
dis = (p[0] - q[0])**2 + (p[1] - q[1])**2
# 每遍历一次 出现次数加一
cnt[dis] += 1
# 在出现次数中选出两个不同元素排列数并累加
for m in cnt.values():
ans += m * (m - 1)
return ans