【LeetCode】139. 单词拆分(中等)——代码随想录算法训练营Day46

本文讲述了如何使用动态规划和回溯法解决LeetCode题目139,即判断给定字符串s是否能通过字典中的单词拼接得到。动态规划方法的时间复杂度为O(n*m²),空间复杂度为O(m),而回溯法则有O(2^n)的时间复杂度和O(n)的空间复杂度。
摘要由CSDN通过智能技术生成

题目链接:139. 单词拆分

题目描述

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

示例 1:

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。

示例 2:

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
     注意,你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

提示:

  • 1 <= s.length <= 300
  • 1 <= wordDict.length <= 1000
  • 1 <= wordDict[i].length <= 20
  • s 和 wordDict[i] 仅由小写英文字母组成
  • wordDict 中的所有字符串 互不相同

文章讲解:代码随想录

视频讲解:动态规划之完全背包,你的背包如何装满?| LeetCode:139.单词拆分_哔哩哔哩_bilibili

题解1:动态规划

思路:这是一个完全背包问题,字符串的长度为背包容量,字典为物品,求解物品的排列能否装满背包。

动态规划分析:

  • dp 数组以及下标的含义:dp[j] 代表从 s 的头部截取长度为 j 的字符串能否由字典组成。
  • 递推公式:dp[j - wordDict[i].length] 为 true 时,dp[j] = dp[j - wordDict[i].length]。
  • dp 数组初始化:dp[0] 初始化为 true,为了保证取最小的结果正确,后续元素需初始化为 false。
  • 遍历顺序:本题求排列,应先遍历背包,再遍历物品。
  • 打印 dp 数组:以输入 s = "leetcode"、wordDict = ["leet","code"] 为例,dp 数组为 [ true, false, false, false, true, false, false, false, true ]。
/**
 * @param {string} s
 * @param {string[]} wordDict
 * @return {boolean}
 */
var wordBreak = function(s, wordDict) {
    const dp = new Array(s.length + 1).fill(false);
    dp[0] = true;
    for (let j = 0; j <= s.length; j++) {
        for (let i = 0; i < wordDict.length; i++) {
            if (j >= wordDict[i].length && s.substring(0, j).endsWith(wordDict[i]) && dp[j - wordDict[i].length]) {
                dp[j] = true;
            }
        }
    }
    return dp[s.length];
};

分析:令 n 为 wordDict 的长度,m 为 s 的长度,则时间复杂度为 O(n * m²),空间复杂度为 O(m)。

题解2:回溯法

思路:使用回溯法求解分割问题,使用记忆化递归优化速度。

/**
 * @param {string} s
 * @param {string[]} wordDict
 * @return {boolean}
 */
var wordBreak = function(s, wordDict) {
    const set = new Set(wordDict);
    const memory = []; // 保存每次计算的以 start 起始的计算结果
    const backtracking = function (start) {
        if (start === s.length) {
            return true;
        }
        // 如果 memory[start] 不是未定义了,直接使用 memory[start] 作为结果
        if (memory[start] !== undefined) {
            return memory[start];
        }
        for (let i = start; i < s.length; i++) {
            if (set.has(s.substring(start, i + 1)) && backtracking(i + 1)) {
                return true;
            }
        }
        memory[start] = false; // 记录以 startIndex 开始的子串是不可被拆分的
        return false;
    }
    return backtracking(0);
};

分析:时间复杂度为 O(2 ^ n),空间复杂度为 O(n)。

收获

练习完全背包问题的求解,理解不同遍历顺序的区别。

第二十二天的算法训练营主要涵盖了Leetcode题目中的三道题目,分别是Leetcode 28 "Find the Index of the First Occurrence in a String",Leetcode 977 "有序数组的平方",和Leetcode 209 "长度最小的子数组"。 首先是Leetcode 28题,题目要求在给定的字符串中找到第一个出现的字符的索引。思路是使用双指针来遍历字符串,一个指向字符串的开头,另一个指向字符串的结尾。通过比较两个指针所指向的字符是否相等来判断是否找到了第一个出现的字符。具体实现的代码如下: ```python def findIndex(self, s: str) -> int: left = 0 right = len(s) - 1 while left <= right: if s[left == s[right]: return left left += 1 right -= 1 return -1 ``` 接下来是Leetcode 977题,题目要求对给定的有序数组中的元素进行平方,并按照非递减的顺序返回结果。这里由于数组已经是有序的,所以可以使用双指针的方法来解决问题。一个指针指向数组的开头,另一个指针指向数组的末尾。通过比较两个指针所指向的元素的绝对值的大小来确定哪个元素的平方应该放在结果数组的末尾。具体实现的代码如下: ```python def sortedSquares(self, nums: List[int]) -> List[int]: left = 0 right = len(nums) - 1 ans = [] while left <= right: if abs(nums[left]) >= abs(nums[right]): ans.append(nums[left ** 2) left += 1 else: ans.append(nums[right ** 2) right -= 1 return ans[::-1] ``` 最后是Leetcode 209题,题目要求在给定的数组中找到长度最小的子数组,使得子数组的和大于等于给定的目标值。这里可以使用滑动窗口的方法来解决问题。使用两个指针来表示滑动窗口的左边界和右边界,通过移动指针来调整滑动窗口的大小,使得滑动窗口中的元素的和满足题目要求。具体实现的代码如下: ```python def minSubArrayLen(self, target: int, nums: List[int]) -> int: left = 0 right = 0 ans = float('inf') total = 0 while right < len(nums): total += nums[right] while total >= target: ans = min(ans, right - left + 1) total -= nums[left] left += 1 right += 1 return ans if ans != float('inf') else 0 ``` 以上就是第二十二天的算法训练营的内容。通过这些题目的练习,可以提升对双指针和滑动窗口等算法的理解和应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值