【LeetCode】674. 最长连续递增序列(简单)——代码随想录算法训练营Day52

题目链接:

题目描述

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

文章讲解:代码随想录

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列_哔哩哔哩_bilibili

题解1:贪心算法

思路:取更长的连续子序列为局部最优,全局最优为最长连续子序列。

/**
 * @param {number[]} nums
 * @return {number}
 */
var findLengthOfLCIS = function(nums) {
    let res = 1;
    let temp = 1;
    for (let i = 1; i < nums.length; i++) {
        if (nums[i] > nums[i - 1]) {
            temp++;
            if (temp > res) {
                res = temp;
            }
        } else {
            temp = 1;
        }
    }
    return res;
};

分析:时间复杂度为 O(n),空间复杂度为 O(1)。

题解2:动态规划

思路:使用动态规划法求解子序列问题。

动态规划分析:

  • dp 数组以及下标的含义:dp[i] 代表以 nums[i] 结尾的最长递增子序列的长度。
  • 递推公式:nums[i] 大于 nums[i - 1] 时,dp[i] = dp[i - 1] + 1。
  • dp 数组初始化:全部初始化为1。
  • 遍历顺序:从前到后。
  • 打印 dp 数组:以输入 [1,3,5,4,7] 为例,dp 数组为 [ 1, 2, 3, 1, 2 ]。
/**
 * @param {number[]} nums
 * @return {number}
 */
var findLengthOfLCIS = function(nums) {
    const dp = new Array(nums.length).fill(1);
    for (let i = 1; i < nums.length; i++) {
        dp[i] = nums[i] > nums[i - 1] ? dp[i - 1] + 1 : 1;
    }
    return Math.max(...dp);
};

分析:时间复杂度为 O(),空间复杂度为 O()。

收获

练习动态规划法求解子序列问题,注意本题为连续子序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值