笔记
文章平均质量分 60
霜溪
专注于算法和编程
展开
-
App常用图标素材网站
1 https://iconpark.bytedance.com2 https://remixicon.com3 https://www.iconfont.cn4 https://icons.bootcss.com/5 https://www.iconfinder.com/原创 2022-11-19 19:14:53 · 697 阅读 · 0 评论 -
如何安装与配置Node.js
引擎的JavaScript运行环境,使用了一个事件驱动、非阻塞式I/O模型, 让JavaScript 运行在服务端的开发平台,它让JavaScript成为与PHP、Python、Perl、Ruby等服务端语言平起平坐的脚本语言。对一些特殊用例进行优化,提供替代的API,使得V8在非浏览器环境下运行得更好,V8引擎执行Javascript的速度非常快,性能非常好,基于。是本人安装时的路径 ,此处要更改为自己的解压文件目录,下同。注:在系统变量中,打开path,如果没有。要加上,当然,一般是有的!原创 2022-11-19 19:13:05 · 961 阅读 · 0 评论 -
一文读懂交叉熵损失函数
进行二分类或多分类问题时,在众多损失函数中交叉熵损失函数较为常用。下面的内容将以这三个问题来展开写目录标题什么是交叉熵损失以图片分类问题为例,理解交叉熵损失函数从0开始实现交叉熵损失函数什么是交叉熵损失以图片分类问题为例,理解交叉熵损失函数从0开始实现交叉熵损失函数1,什么是交叉熵损失交叉熵是信息论中的一个重要概念,主要用于度量两个概率分布间的差异性p(x)表示样本的真实分布,q(x)表示模型所预测的分布交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实原创 2022-04-08 22:46:07 · 27454 阅读 · 2 评论 -
张量扁平化——CNN的Flatten操作
张量扁平化操作是卷积神经网络中的一个常见操作。这是因为在全连接层接受输入之前,传递给全连接层的卷积层输出必须被扁平化。我们了解到卷积神经网络的张量输入通常有4个轴,一个用于批处理大小,一个用于颜色通道,还有一个用于高度和宽度即:(批量大小、通道、高度、宽度)那么现在我们以一张图片为例,看看如何将它扁平化这是一张彩色图片,也就是有r,g,b共三个通道,大小为128*128,按照上面的表示方法,我们可以将它表示为[1,3,128,128]code:好吧,可是看到,张量已经被拉平了,达到了我们预原创 2022-04-08 22:09:27 · 2688 阅读 · 0 评论 -
PyTorch创建tensor的四种方式
Let’s start!data=np.array([1.,2.,3.,4.])t1=torch.Tensor(data)t2=torch.tensor(data)t3=torch.as_tensor(data)t4=torch.from_numpy(data)print(t1)print(t2)print(t3)print(t4)结果:tensor([1., 2., 3., 4.])tensor([1., 2., 3., 4.], dtype=torch.float64)tens原创 2022-04-05 12:08:00 · 8106 阅读 · 0 评论 -
2021亚太建模比赛A题二等奖,回顾一下建模历程
2021亚太建模比赛A题二等奖,回顾一下建模历程原创 2022-02-02 14:32:24 · 635 阅读 · 0 评论 -
什么是数学建模?如何在数学建模中拿奖?通过建模学到了啥?
如何在数学建模中拿奖?原创 2022-01-31 16:30:10 · 41058 阅读 · 0 评论 -
括号匹配(python)
class Solution: def dt(self, s): L = [] index = 0 Balance = True openss = "([{" closess = ")]}" while index < len(s) and Balance: closes = s[index] if closes in "({[": .原创 2021-07-15 01:26:50 · 181 阅读 · 0 评论 -
利用递归求解行列式
利用递归求解行列式(适用于10阶左右)**那么何为递归呢?**递归是利用某种方法将一个大问题不断分解为规模较小的子问题,持续分解,直到规模小到可以用非常简单直接的方法解答。***那么如何设计递归程序呢?***这里提出三条指导设计递归程序的方法。1递归算法必须有一个基本结束条件。2递归算法必须能改变状态向基本结束条件演进。3递归算法必须调用自身。基于此,那就开始我们的正题,利用递归计算行列式。在这里我们如何把一个大规模的行列式逐渐减小规模,使其利于计算,这时,拉普拉斯定理就起了非常重要的作用。拉普拉斯定原创 2021-07-11 11:00:42 · 1394 阅读 · 0 评论