剑指Offer算法题——斐波那契数列(JAVA)

首先我们聊一下什么是斐波那契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(≥ 2,∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

 算法描述:

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

 F(0) = 0,   F(1) = 1

F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

 示例 1:

输入:n = 2
输出:1

 示例 2:

 输入:n = 5

 输出:5

方法一:

 解题思路:(使用动态规划法)

 动态规划法:

        动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。
        动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

状态定义:设dp为一维数组,其中dp[i]的值代表斐波那契数列第i个数字

转移方程:dp[i+1]=dp[i]+dp[i−1] ,即对应数列定义 f(n+1)=f(n)+f(n−1)f(n + 1) = f(n) + f(n - 1)f(n+1)=f(n)+f(n−1) ;

初始状态:dp[0]=0dp[0] = 0dp[0]=0, dp[1]=1dp[1] = 1dp[1]=1 ,即初始化前两个数字;

返回值:dp[n]dp[n]dp[n] ,即斐波那契数列的第 n 个数字。

代码:

class Solution {
    public int fib(int n) {
        if(n == 0) return 0;
        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2; i <= n; i++){
            dp[i] = dp[i-1] + dp[i-2];
            dp[i] %= 1000000007;
        }
        return dp[n];
    }
}

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

方法二:(采用递推方法求a[n]

class Solution {
    public int fib(int n) {
        if(n == 0) return 0;
        int[] a = new int[n+1];
        if(n==1||n==2){
            return 1; }
        a[1] = 1;
        a[2] = 1;
        for(int i = 3; i <= n; i++){
            a[i] = a[i-1] + a[i-2];
            a[i] %= 1000000007;
        }
        return a[n];
    }
}

方法三:(采用递归方法求a[n]

代码:

class Solution {
    public int fib(int n) {
        if(n == 0) return 0;
        if(n == 1||n==2) return 1;
        return fib(n-1)+fib(n-2);
    
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值