首先我们聊一下什么是斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
算法描述:
写一个函数,输入 n
,求斐波那契(Fibonacci)数列的第 n
项(即 F(N)
)。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2 输出:1
示例 2:
输入:n = 5
输出:5
方法一:
解题思路:(使用动态规划法)
动态规划法:
动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。
动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。状态定义:设dp为一维数组,其中dp[i]的值代表斐波那契数列第i个数字
转移方程:dp[i+1]=dp[i]+dp[i−1] ,即对应数列定义 f(n+1)=f(n)+f(n−1)f(n + 1) = f(n) + f(n - 1)f(n+1)=f(n)+f(n−1) ;
初始状态:dp[0]=0dp[0] = 0dp[0]=0, dp[1]=1dp[1] = 1dp[1]=1 ,即初始化前两个数字;
返回值:dp[n]dp[n]dp[n] ,即斐波那契数列的第 n 个数字。
代码:
class Solution {
public int fib(int n) {
if(n == 0) return 0;
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for(int i = 2; i <= n; i++){
dp[i] = dp[i-1] + dp[i-2];
dp[i] %= 1000000007;
}
return dp[n];
}
}
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
方法二:(采用递推方法求a[n])
class Solution {
public int fib(int n) {
if(n == 0) return 0;
int[] a = new int[n+1];
if(n==1||n==2){
return 1; }
a[1] = 1;
a[2] = 1;
for(int i = 3; i <= n; i++){
a[i] = a[i-1] + a[i-2];
a[i] %= 1000000007;
}
return a[n];
}
}
方法三:(采用递归方法求a[n])
代码:
class Solution {
public int fib(int n) {
if(n == 0) return 0;
if(n == 1||n==2) return 1;
return fib(n-1)+fib(n-2);
}