CV-homework

这篇是CV作业要看的论文,我读了这篇

Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

分析这篇论文之前,由于没太接触过,我先记录一点基础知识。

LDR(低动态范围):

LDR图像通常具有有限的亮度范围,这意味着它们无法准确捕捉高亮度和低亮度区域的细节。

这些图像通常使用标准的8位深度图像表示,每个通道有256个不同的亮度级别。

HDR(高动态范围)

HDR图像具有更广的亮度范围,能够准确捕捉高亮度和低亮度区域的细节。

这些图像通常使用更高的位深度来表示,例如16位或32位深度,以提供数千或数百万个不同的亮度级别。

相机成像过程的建模

  1. 动态范围裁剪:相机首先将HDR图像的像素值裁剪到一个有限的范围内,由于裁剪操作,过度曝光区域的像素值信息存在损失。
  2. 相机响应函数的非线性映射:为了匹配人眼对真实场景的感知,相机通常通过相机响应函数做非线性映射。
  3. 量化:非线性映射之后,记录的像素值量化到8bit,量化过程通常会导致曝光不足中的渐变区域出现误差。

论文记录

本文的任务是将单张LDR恢复为HDR,核心思想是将LDR图像成像过程的pipeline引入到模型中,将动态范围裁剪、非线性映射和量化,运用三个CNN来反转这些步骤,同时对整个模型进行端到端的调整,减少错误累积。

于是本文将会单图像HDR重建分为三个子任务:dequantizaion linearization以及hallucination。首先,给定输入的LDR图像,应用反量化网络来恢复量化导致的缺失细节,并且减少由于曝光不足区域所形成的伪影。再使用线性化网络来估计逆CRF,并把非线性图像转化为线性图像,最后使用Hallucination-Net预测过度曝光区域的缺失内容,同时使用Refinement-Net提高泛化能力。

Dequantization

使用了Dequantization-Net 采用 6 级 U-Net 架构网络来减少LDR图像中的伪影,每层用了两个卷积层和leaky ReLU激活,最后归一化到 [−1.0, 1.0]。将去量化网络的输出添加到输入LDR,以生成反量化的LDR图像

linearization

图像的边缘特征和直方图特征被证明对模拟相机的CRF是有效的,于是,本文从上一网络输出的非线性LDR提取边缘特征和直方图特征作为网络的输入。为了表示CRF,在[0,1]区间均匀采样1024个点离散化逆CRF,因此逆CRF可以由1024维向量表示。采用EMoR通过K个PCA基向量的线性组合近似逆CRF,以ResNet-18作为backbone,为了提取全集特征,最后加了个全局池化。

Hallucination

在经过dequantizaion和linearization后,这里的目的是恢复由于动态范围裁剪造成的内容缺失,训练了带有skip connects的encoder-decoder结构Hallucination-Net来预测过度曝光区域内缺失的细节,过曝光区域中缺失的像素值总是大于现有像素值,因此在网络的末端加一个Relu层来约束Hallucination Net预测正残差。

在这三个网络都训练收敛好后,联合到一起进行优化条件,减少了子网络之间的误差累积,进一步提高了重建的性能。

实验

从实验结果可以看出本文的方法在所有四个数据集上都优于最先进的方法。在对 HDR-REAL 训练集进行微调后,模型在 HDR-REAL 上的性能进一步提高了 1.57,在 RAISE 上提高了 0.41,在 HDR-EYE 数据集上分别提高了 0.5。

再看视觉比较

HDRCNN在曝光不足的区域往往存在噪声、带状伪影或过饱和的颜色。

DRTMO不能很好地处理过度曝光的区域,导致对比度模糊和低对比度的结果。

ExpandNet在过度曝光的区域生成伪影。

相比之下,本文所提出的模型在曝光不足和过度曝光的区域都恢复了精细细节,并呈现了视觉上很合适结果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值