Spark-Sql

一、DataFrame&DataSet

DataFrame

在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二维表格

DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame所表示的二维表数据集的每一列都带有名称和类型。

这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。
在这里插入图片描述

DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计划通过 Spark catalyst optimiser 进行优化(例如谓词下推,现执行filter)。

DataSet

DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter等等)。

➢ DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象
➢ 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性;
➢ 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet 中的字段名称;
➢ DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。
➢ DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序

二、DataFrame的使用

Spark Core 中,如果想要执行应用程序,需要首先构建上下文环境对象 SparkContext,Spark SQL 其实可以理解为对Spark Core 的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。SparkSql使用SparkSession作为新的执行入口,但其底层还是使用SparkContext。

读取文件创建DataFramea

SQL语法风格

SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助

➢ 查看 Spark 支持创建文件的数据源格式
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile

➢ 在 spark 的 bin/data 目录中创建 user.json 文件
{"username":"zhangsan","age":20}

➢ 读取 json 文件创建 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

➢ 展示结果
scala> df.show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
+---+--------+

➢创建临时视图
scala> df.createOrReplaceTempView("people")
注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。
使用全局临时表时需要全路径访问,如:global_temp.people

➢通过 SQL 语句实现查询全表
scala> val sqlDF = spark.sql("SELECT * FROM people")
scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+

注意:如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作 为 Int
处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和 Long 类型转换,但是和 Int 不能进行转换

DSL语法风格

DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了。

1) 创建一个 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2) 查看 DataFrame 的 Schema 信息
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)

3) 只查看"username"列数据,
scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
| lisi|
| wangwu|
+--------+

4) 查看"username"列数据以及"age+1"数据
注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1 as "newage").show()
+--------+---------+
|username|newage|
+--------+---------+
|zhangsan| 21|
| lisi| 31|
| wangwu| 41|
+--------+---------+

5) 查看"age"大于"30"的数据
scala> df.filter($"age">30).show
+---+---------+
|age| username|
+---+---------+
| 40| wangwu|
+---+---------+

RDD和DataFrame的转换

使用toDF方法将RDD转换为DataFrame

scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
| id|
+---+
| 1|
| 2|
| 3|
| 4|
+---+

实际开发中,一般通过样例类将 RDD 转换为 DataFrame
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, 
t._2)).toDF.show
+--------+---+
| name|age|
+--------+---+
|zhangsan| 30|
| lisi| 40|
+--------+---+

DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> val df = sc.makeRDD(List(("zhangsan",30),("lisi",40))).map(t=>User(t._1,t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> val rdd = df.rdd
rdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[46] at rdd at <console>:25

#RDD存储的类型为org.apache.spark.sql.Row

scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])

scala> array(0)
res28: org.apache.spark.sql.Row = [zhangsan,30]

scala> array(0)(0)
res29: Any = zhangsan

scala> array(0).getAs[String]("name")
res30: String = zhangsan

三、DataSet的使用

DataSet 是具有强类型的数据集合,需要提供对应的类型信息。

创建 DataSet

1) 使用样例类序列创建 DataSet

scala> case class Person(name: String, age: Long)
defined class Person

scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]

scala> caseClassDS.show
+---------+---+
| name|age|
+---------+---+
| zhangsan| 2|
+---------+---+

2) 使用基本类型的序列创建 DataSet

scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+

RDD和DataSet的转换

SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构。

➢RDD转DataSet

scala> case class User(name:String, age:Int)
defined class User

scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

➢DataSet 转换为 RDD

scala> case class User(name:String, age:Int)
defined class User

scala>res11=sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1,t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at <console>:25

scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))

DataFrame 和 DataSet 的转换

➢ DataFrame 转换为 DataSet

scala> case class User(name:String, age:Int)
defined class User

scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

➢ DataSet 转换为 DataFrame

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

四、RDD、DataFrame、DataSet 三者的关系

在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们
和 RDD 有什么区别呢?首先从版本的产生上来看:
➢ Spark1.0 => RDD
➢ Spark1.3 => DataFrame
➢ Spark1.6 => Dataset

三者的共性和区别

共性

➢ RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数 据提供便利;
➢ 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到 Action 如 foreach时,三者才会开始遍历运算; ➢ 三者有许多共同的函数,如 filter,排序等;
➢ 在对 DataFrame 和 Dataset进行操作许多操作都需要这个包:import spark.implicits._(在 创建好 SparkSession 对象后尽量直接导入)
➢ 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会 内存溢出 ➢ 三者都有 partition 的概念
➢ DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型

区别

  1. RDD

➢ RDD 一般和 spark mllib 同时使用
➢ RDD 不支持 sparksql 操作

  1. DataFrame

➢ 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直 接访问,只有通过解析才能获取各个字段的值
➢ DataFrame 与 DataSet 一般不与 spark mllib 同时使用
➢ DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select,groupby 之类,还能注册临时表/视窗,进行 sql 语句操作
➢ DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这样每一列的字段名一目了然(后面专门讲解)

  1. DataSet

➢ Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]
➢ DataFrame 也可以Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS方法或者共性中的第七条提到的模式匹配出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class之后可以很自由的获得每一行的信息

三者之间的相互转换
在这里插入图片描述

五、用户自定义函数

在 Spark 处理数据的过程中,虽然 DataSet 下的算子不多,但已经可以处理大多数的数据需求,但仍有少数需求需要自定义函数。UDF(User Defined Functions) 是普通的不会产生 Shuffle 不会划分新的阶段的用户自定义函数,UDAF(User Defined Aggregator Functions) 则会打乱分区,用户自定义聚合函数。

UDF

用户可以通过 spark.udf 功能添加自定义函数,实现自定义功能。

user.json数据
{“username”: “Aimyon”,“age”: 28}
{“username”: “aimer”,“age”: 32}
{“username”: “ado”,“age”: 22}
{“username”: “vaundy”,“age”: 22}

object Spark01_UDF {
  def main(args: Array[String]): Unit = {
  //配置Session环境
    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("UDF")
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
  //读取文件
    val df = spark.read.json("resources/user.json")
  //创建视图
    df.createOrReplaceTempView("user")
  //用户自定义函数
    spark.udf.register("prefixName",(name:String)=>{
      "Name:"+name
    })
  //在sql中使用函数
    spark.sql("select age,prefixName(userName) from user ").show()
	+---+--------------------+
	|age|prefixName(userName)|
	+---+--------------------+
	| 28|         Name:Aimyon|
	| 32|          Name:aimer|
	| 22|            Name:ado|
	| 22|         Name:vaundy|
	+---+--------------------+
  }
}

UDAF

强类型的 Dataset 和弱类型的 DataFrame 都提供了相关的聚合函数, 如count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承UserDefinedAggregateFunction来实现用户自定义弱类型聚合函数。从 Spark3.0 版本后,UserDefinedAggregateFunction 已经不推荐使用了。可以统一采用强类型聚合函数Aggregator

main方法;

object Spark02_UDAF_2 {
  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("UDAF")
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()

    val df = spark.read.json("resources/user.json")

    df.createOrReplaceTempView("user")

    spark.udf.register("ageAvg",functions.udaf(new MyAvgUDAF))

    spark.sql("select ageAvg(age) from user ").show()
    +--------------+
	|myavgudaf(age)|
	+--------------+
	|            26|
	+--------------+
  }

UDAF的定义

 case class Buff(var total:Long,var count:Long)
  class MyAvgUDAF extends Aggregator[Long,Buff,Long]{
//    缓冲区的初始化
    override def zero: Buff = {
      Buff(0L,0L)
    }
//    根据输入数据更新缓冲区数据 b:缓冲区 a:输入数据
    override def reduce(b: Buff, a: Long): Buff = {
      b.total = b.total + a
      b.count = b.count + 1
      b
    }
//    合并缓冲区
    override def merge(b1: Buff, b2: Buff): Buff = {
      b1.total = b2.total + b1.total
      b1.count = b2.count + b1.count
      b1
    }
//    计算结果
    override def finish(reduction: Buff): Long = {
      reduction.total/reduction.count
    }
//    缓冲区编码:分区中的传输需要序列化
    override def bufferEncoder: Encoder[Buff] = Encoders.product
//    输出编码
    override def outputEncoder: Encoder[Long] = Encoders.scalaLong
  }
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Aimyon_36

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值