自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 全连接层理解

全连接层将当前层每个节点与上一层所有节点相连,用于整合前层提取的特征。输入x1、x2、x3经过全连接处理,输出为a1、a2、a3,完成特征综合。这种结构常用于神经网络后端,实现特征的高层抽象和分类任务。

2025-06-05 17:22:56 108

原创 前向传播和反向传播的理解

神经网络的信息传播分为前向传播和反向传播两个方向。前向传播中,数据从输入层经隐藏层到输出层,通过线性变换和激活函数产生预测结果。反向传播则利用损失函数梯度,通过链式法则逐层计算参数梯度,并用优化器更新参数。理解前向传播函数是掌握网络架构的有效方法。

2025-06-05 17:10:58 102

原创 深度学习中flattern的常见用法

flatten函数将多维张量展开为一维,不改变原张量而是返回新张量。可选参数start_dim指定起始维度(默认从第一维开始),end_dim指定结束维度(默认到最后一维)。使用x=x.flatten(start_dim,end_dim)实现指定维度的展平操作。该函数常用于神经网络中输入数据的维度调整。

2025-06-05 11:11:40 54

原创 torch.tensor的几种用法

list_of_lists = [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]] # Python列表的列表的列表。tensor_randn = torch.randn(3, 4, 5) # 深度=3, 高度=4, 宽度=5。tensor_ones = torch.ones(3, 4, 5) # 深度=3, 高度=4, 宽度=5。tensor_rand = torch.rand(3, 4, 5) # 深度=3, 高度=4, 宽度=5。

2025-06-05 10:50:17 95

原创 Python中的__future__模块

Python的__future__模块允许在旧版本中使用新版本的特性,实现代码的兼容过渡。例如在Python 2.7中,通过from __future__ import print_function即可按照Python 3的方式使用带括号的print()函数。这种机制解决了版本升级带来的兼容性问题,让开发者能提前适应新语法,同时保证代码在不同版本间的可移植性。典型应用场景包括在Python 2环境中提前使用Python 3的除法规则、绝对导入等特性。

2025-06-04 10:30:09 151

原创 循环神经网络

摘要:Transformer模型克服了传统RNN的记忆限制和计算效率问题。通过位置编码解决文本位置敏感性问题,采用多头注意力机制分组处理特征向量。核心计算基于Q、K、V三个可训练矩阵,实现上下文全局关注。编码器负责输入处理,解码器生成输出,均包含注意力机制、残差连接和归一化操作。该架构通过自注意力机制动态调整词语权重,有效捕捉长距离依赖关系,成为当前NLP领域的主流模型。(149字)

2025-06-03 20:56:10 167

原创 卷积神经网络算法

3 填充 padding 如果无填充那么越靠近中间的输入数据就会被计算次数越多,那么中间数据的重要性就会从一开始比边围数据高。RELU:增加非线性,依据特殊的非线性函数表达式,让好的特征继续学,那么好的特征数值就会越来越大,不好特征停下来直接为0。卷积神经网络中学习的是卷积核的参数大小、偏置大小、全连接层的权重大小和偏置大小。卷积层数越多,网络越深层,那么感受野就会越大,就越会考虑全局的特征(信息)。考虑的只是临近的特征点的信息,只关注局部,并没有关注全局。卷积层:做卷积提取数据特征。

2025-06-03 16:43:11 231

原创 IP地址的概念

IP地址是32位二进制数,通常用点分十进制表示,分为网络ID和主机ID两部分。根据网络ID的不同,IP地址分为A、B、C三类:A类(1.0.0.0-126.255.255.255)用于大型网络,支持超过1亿主机;B类(128.0.0.0-191.255.255.255)用于中型网络,容纳6万多主机;C类(192.0.0.0-223.255.255.255)用于小型网络,最多254个主机。特殊网络号如127.0.0.1用于本机测试。不同类型IP地址的网络ID位数不同,决定了其应用场景和主机容量。

2025-06-02 20:25:17 164

原创 深度学习训练的一般步骤

文章摘要:机器学习模型的训练过程包含多个关键步骤。首先通过线性函数计算初始得分,然后用exp函数进行非线性放大,使数值差异更明显。接着通过归一化处理将输出转化为概率分布,便于预测。之后使用对数函数确定损失函数,以衡量模型预测与真实值的差距。最后基于损失函数的反馈继续优化模型参数,循环这一过程直至模型收敛。这一流程展示了从线性计算到非线性转化的完整训练链路。

2025-05-30 11:41:45 92

原创 利用VMware安装新系统时发生VMware Exception 0xc0000005 (access violation) has occurred.报错

摘要:通过将虚拟机处理器配置调整为单处理器单内核,解决了虚拟机运行异常的问题,使其恢复正常运行。这一调整表明原配置可能存在资源分配冲突或兼容性问题。

2025-05-29 20:40:19 103

原创 配置Pycharm运行环境的几种方法

文章摘要:介绍了两种Python软件包安装方法。一是在PyCharm中使用UI界面直接安装(操作简单但无法指定Python版本);二是通过Anaconda命令行创建指定版本环境后安装,其中包含2种方式:2.1使用清华镜像源在线安装(pip install -i 镜像地址),2.2安装本地whl文件(需从PyPI官网下载)。第二种方法虽然操作复杂但支持版本控制,适合特定环境需求。

2025-05-29 20:22:49 227

原创 ANACONDA通过conda命令安装软件包后找不到软件包

摘要:在AnacondaPrompt中成功安装软件包的解决方法:首先用CD命令切换到目标环境目录(如myenv),激活环境(conda activate myenv),再执行pip install安装。验证安装结果可用pip list查看。该方法有效解决了环境下的软件包安装问题。(98字)

2025-05-29 20:15:39 130

原创 Pycharm2025版通过ANACONDA导入环境报错

将解释器类型由Conda改为Python,问题解决。

2025-05-29 20:10:21 86

原创 算法之寻找符合条件的连续的最短子数组

已知一个整型数组,现需要找到累计和大于等于目标结果的子数组的最短长度。当然暴力解法就是用两个for循环,实现从0下标依次遍历每次都将符合条件的子数组长度存储下来,后续再依次比较或者是找到下一个长度后就与之前得到的最短长度进行比较,如果长度更小则更新最短长度。但最优解法是使用滑动窗口法(类双指针法)。

2024-01-27 18:41:58 317

原创 算法之有序数组的平方有序排列

使用双指针法的另一个用例。因平方后的较大值一定是出现在原数组的头和尾部,故我们可以定义两个指针,一个指向原数组的头部并随着比较结果下标依次后移,一个指向原数组的尾部并随着比较结果下标依次前移。因需要依次把比较结果的较大值放到新数组中,所以需要for循环循环numsSize次。

2024-01-27 18:26:24 221

原创 算法之移除数组元素

数组中的下标是连续的,意味着数组在内存中所占的空间是连续的,因此移除数组某一元素并不是说删除数组中的某一个元素,而是用后面的元素依次向前覆盖数组原来的数据,如此达到所谓的“移除数组元素”。

2024-01-26 19:47:11 323 1

原创 算法之二分查找法

数组长度很长,但数组中的元素均为按下标升序排列,可用二分查找算法快速找到期望查找值在数组中的位置(下标值)。

2024-01-26 19:31:10 356 1

原创 虚拟机VM利用U盘重装系统

VM虚拟机可以在建系统时选择ISO文件进行系统安装,但凭借着VM开机即可识别U盘的优势,我们也可以直接建立一个空硬盘,然后利用U盘进行系统安装(类似于真正地重装系统)。建议新手在重装自家电脑时可以先利用VM进行练手,否则重装时可能会出现各种各样的错误。博客新手,如有错误,请大家指出。

2022-12-23 21:45:40 11250 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除