自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 mysql 安装

打开MySQL官方下载页:https://dev.mysql.com/downloads/installer/电脑 win + R 打开运行窗口,同时按住 Ctrl+ Shift + Enter,以管理员身份打开cmd。(可选)设置MySQL服务名(服务名是之后开启MySQL服务时使用的名称)右键“此电脑”> 属性 > 高级系统设置,打开下图界面,点击“环境变量”。点击右上角“新建”,将之前我们复制的MySQL的bin目录路径粘贴进去。点击 Execute,等待安装完毕(如下图所示)。

2024-10-13 19:46:47 122

原创 UbunTu cuda版本切换,软连接

这里,cuda-11.7和cuda-11.8就是我们安装的两个cuda版本了,而cuda是一个软链接,它指向我们指定的cuda版本(之前是cuda-11.7,现在想要指向11.8)当我们想使用cuda-11.8版本时,只需要删除上面的软链接,然后重新建立指向cuda-8.0版本的软链接即可(注意名称还是cuda,因为要与bashrc文件里设置的保持一致)可以看到现在笔者的cuda是指向的cuda11.7,再用nvcc --version 命令看下我们当前使用的是哪个版本.” 保存并退出。

2024-03-01 18:52:43 1342

原创 ubuntu MP4文件无法播放问题

输入 sudo apt install ubuntu-restricted-extras。按住 ctrl+alt+T 打开终端。来解决ubuntu许多受限问题。

2023-11-23 19:07:41 625

原创 deepfake detection 基于指纹、基于图像和基于频谱的检测方法

深度伪造检测(Deepfake Detection)是指检测和识别深度伪造技术所生成的虚假图像、音频、视频或文本。深度伪造技术使用深度学习和人工智能方法来生成虚假内容,这可能包括合成面部图像、模仿声音、修改视频或生成虚假文本等。深度伪造检测是一个不断发展的领域,研究人员和工程师不断提出新的方法和技术,以提高检测的准确性和鲁棒性。随着深度伪造技术的不断演进,深度伪造检测方法也在不断发展,以适应新的挑战。深度伪造工具可能会在生成的内容中留下某些独特的噪音、伪造工具的标志或其他可识别的特征。

2023-11-10 13:01:51 583 1

原创 机器学习:L1 约束

它在回归问题中用于特征选择,有助于识别对目标变量有重要影响的特征,同时将不相关的特征的权重收缩为零。L1正则化的效果是使一些权重趋向于零,从而使模型更加稀疏,即某些特征对模型的预测贡献较小,这有助于特征选择和减小模型的复杂度。L1约束(L1 constraint)通常是指在机器学习和优化领域中,对模型的权重(参数)添加L1正则化项,L1正则化项也称为L1惩罚(L1 penalty)或L1范数(L1-norm),它的形式通常为。其中,λ是正则化参数,用于控制正则化的。以控制模型的复杂度和减小过拟合的风险。

2023-11-10 11:06:09 316 1

原创 机器学习:卷积,反卷积,池化,反池化

最大池化是对局部的值取最大;平均池化是对局部的值取平均;随机池化是根据概率对局部的值进行采样,采样结果便是池化结果。具体来说,若卷积核是C,输入是X,卷积得到的特征图就是Y,那么CX=Y。反卷积操作就是,Y左乘X转置,c T y = x。反卷积是特殊的卷积,可以将输入还原。分为最大池化,平均池化,随机池化。内积后得到的是特征图。池化的作用就是降维。

2023-11-09 20:48:33 228 1

原创 机器学习,可迁移攻击,通用扰动攻击和对抗样本攻击

通用扰动攻击是一种更通用的攻击方法,攻击者寻找一种扰动,可以应用于大量输入数据样本,而不是特定的单个样本。攻击者寻找一种扰动,将原始输入数据样本修改为对抗样本,以使模型在对抗样本上产生错误的输出。对抗样本攻击通常专注于欺骗模型的个别数据样本,目标是在特定输入上实现攻击成功。通用扰动攻击(Universal Perturbation Attack)和对抗样本攻击(Adversarial Example Attack)是两种不同的攻击方法,它们有一些区别和相似之处。

2023-11-07 16:02:08 297

原创 CV黒盒攻击

在黑盒攻击中,攻击者通常通过试探和分析来推断模型的行为,并生成特定的输入以欺骗或破坏目标模型。second:基于迁移的攻击:攻击者利用已有知识、数据或模型,将这些信息迁移到目标模型上,以推断目标模型的行为并进行攻击。通过迁移学习、模型迁移或特征迁移等技术,攻击者可以对目标模型进行攻击,即使对目标模型的内部信息一无所知。first::基于查询的攻击:攻击者通过向目标模型发送特定的查询样本,并观察模型的输出,通过分析不同查询样本和输出之间的关联关系,推断模型的性质和脆弱点,从而生成有效的攻击样本。

2023-11-07 15:33:04 58

原创 torch.argmax(outputs, dim=1)与torch.argmax(outputs, dim=0)

torch.argmax(outputs, dim=1)

2023-11-04 16:41:12 1326 1

原创 KNN (k近邻算法)代码实现

计算测试点与所有训练点的距离。# 返回k个点中出现最频繁的标签。# 获取距离最近的k个点的索引。# 利用matplotlib绘制图像。# 初始化KNN分类器,指定K值。# 将数据集分为训练集和测试集。# 获取k个点的标签。# 加载Iris数据集。# 在测试集上进行预测。

2023-11-04 10:26:01 91 1

原创 BCEloss

当y为0的时候,公式前半部分为0,y' 需要尽可能为0才能使后半部分数值更小;当y为1时,后半部分为0,y'需要尽可能为1才能使前半部分的值更小,这样就达到了让y'尽量靠近y的预期效果。BCELoss:Binary Cross Entropy Loss,二值交叉熵损失,适用于0/1二分类。这要求输出必须在0-1之间,所以为了让网络的输出确保在0-1之间,一般都会加一个Sigmoid。y是真实标签,y'是预测值,

2023-11-03 16:48:34 258

原创 RunTimeError:element 0 of tensors does not require grad and does not have a grad_fn

这个错误源于Pytorch对Tensor进行 backward() 自动求导时,该Tensor的requires_grad为False,requires_grad参数指定是否记录对Tensor的操作以便计算梯度。在创建Tensor时该参数默认为False,需要手动设置如下。也可以通过loss.requires_grad_(True)设置。

2023-11-01 21:24:22 3060

原创 pycharm想要显示多个运行结果

在该文件运行结束后,在下方右键点击pin tab,相当于该运行结果被固定了。如果想要文件的运行结果不被下一个运行结果覆盖,可以使用pin tab。

2023-10-30 16:37:30 1102

原创 pycharm控制台隐藏了,找回方法

单击”View“菜单->“Tool Windows”->"Python Console"即可重新调出。当时不小心将pycharm控制台右键hide了,就是下面这个。

2023-10-30 16:02:15 3125

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除