- 博客(3)
- 收藏
- 关注
原创 【无标题】针对MNIST数据集,构造卷积神经网络实现手写数字识别。
以pytorch构建的两层卷积核,一层池化层,两层全连接层的神经网络,在Mninst数据 集上训练,准确率达到98%,而且在增加旋转的Mninst数据集上达到97%的准确率。
2022-12-28 15:16:05 2132 2
原创 【无标题】pytorch构建利用迁移学习MNIST数据集的加法器实验
迁移学习,以之前训练的MNIST手写数字识别模型为基础,实现一个手写数字加法机
2022-12-23 16:50:35 612 1
原创 迪杰斯特拉求解各参量变化
#include <stdio.h>#include <stdlib.h> #define MAXVEX 9#define INFINITY 32767 typedef int Patharc[MAXVEX]; //存放最短路径上的结点编号typedef int ShortPathTable[MAXVEX]; //各节点到源点的路径(经过中间结点)长度 struct MGraph{ int numVertexes; int *vex; int arc[MAXV
2021-06-04 23:10:58 484
基于pytorch的深度学习迁移学习和MNIST数据集的加法器实验
2022-12-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人