自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 【无标题】针对MNIST数据集,构造卷积神经网络实现手写数字识别。

以pytorch构建的两层卷积核,一层池化层,两层全连接层的神经网络,在Mninst数据 集上训练,准确率达到98%,而且在增加旋转的Mninst数据集上达到97%的准确率。

2022-12-28 15:16:05 2132 2

原创 【无标题】pytorch构建利用迁移学习MNIST数据集的加法器实验

迁移学习,以之前训练的MNIST手写数字识别模型为基础,实现一个手写数字加法机

2022-12-23 16:50:35 612 1

原创 迪杰斯特拉求解各参量变化

#include <stdio.h>#include <stdlib.h> #define MAXVEX 9#define INFINITY 32767 typedef int Patharc[MAXVEX]; //存放最短路径上的结点编号typedef int ShortPathTable[MAXVEX]; //各节点到源点的路径(经过中间结点)长度 struct MGraph{ int numVertexes; int *vex; int arc[MAXV

2021-06-04 23:10:58 484

基于pytorch的深度学习迁移学习和MNIST数据集的加法器实验

迁移学习可以将在一个领域训练的机器学习模型应用到另一个领域,在某种程度上提高了训练模型的利用率,解决了数据缺失的问题,并赋予了智能模型“举一反三”的能力。本实验以之前训练的MNIST手写数字识别模型为基础,实现一个手写数字加法机。

2022-12-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除