- 博客(14)
- 收藏
- 关注
原创 人工智能十大数学知识-线性代数
本文系统介绍了人工智能中线性代数的核心概念与应用,重点涵盖向量、矩阵、特征值分解和奇异值分解等关键内容。向量作为AI数据的基本单元,其运算(加法、数乘、内积)和范数(L1/L2/L∞)在特征表示和正则化中发挥重要作用。矩阵用于组织批量数据和描述线性变换,其乘法运算构成神经网络全连接层的数学基础。特征值分解(EVD)适用于对称矩阵,是主成分分析(PCA)的核心;奇异值分解(SVD)则通用于任意矩阵,支持推荐系统和图像降噪等应用。这些线性代数工具为AI模型的特征处理、降维和参数优化提供了数学基础。
2025-10-28 01:13:49
896
原创 nas webdav 挂载盘Git报错:fatal: detected dubious ownership in repository at
摘要:在NAS220+中通过Web Station部署PHP项目时,本地电脑用WebDAV挂载项目目录并用Git拉取NAS上的Gogs仓库报错。原因是项目所有者与当前Windows用户不一致触发了Git安全机制,解决方案是执行git config --global --add safe.directory "*"命令,将所有目录设置为当前用户的安全目录。
2025-11-08 21:28:40
228
原创 人工智能十大数学知识 - 群论
群论是数学中研究对称性的重要分支,其核心概念"群"定义为满足封闭性、结合律、单位元和逆元四个公理的代数结构。群论在人工智能中应用广泛,可用于分析数据对称性、简化计算和优化模型泛化能力。文章详细介绍了群的基本性质、子群与陪集、拉格朗日定理等核心内容,以及特殊群类如置换群、正交群和特殊欧几里得群的定义与应用。群同态与同构的概念帮助将复杂群映射为简单群,降低AI模型的对称结构分析难度。这些理论为处理几何数据(如点云)、无序数据(如文本)提供了数学基础,在计算机视觉、自然语言处理等领域具有重要作
2025-10-29 14:49:33
921
原创 人工智能十大数学知识 - 复杂性理论
计算复杂性理论是人工智能中评估问题难度的核心框架,研究资源消耗与问题固有难度的关系。其核心内容包括时间/空间复杂度分析(如O(n)线性复杂度)、P/NP/NPC/NP-hard等复杂度类划分,以及归约方法等。该理论指导AI算法设计:1)优先选择P类算法处理大规模数据;2)对NP难问题采用近似算法;3)优化模型复杂度以适应硬件限制。典型应用包括机器学习算法选择(如用决策树替代SVM)、深度学习模型压缩(如Transformer稀疏注意力)、组合优化问题近似求解(如路径规划)等,为AI系统的效率优化提供理论依据
2025-10-29 14:47:58
687
原创 人工智能十大数学知识 - 数理逻辑
数理逻辑为AI提供知识表示与推理的数学基础。命题逻辑通过真值表、联结词和范式(CNF/DNF)实现简单规则表示,支持专家系统规则库和SAT问题求解。谓词逻辑(一阶逻辑)通过量词(∀/∃)、谓词和推理规则(US/UG/ES)处理复杂知识,是知识图谱和专家系统的核心。两者共同构建可解释的AI推理框架,从自动驾驶规则到医疗诊断均有广泛应用。
2025-10-29 14:45:48
605
原创 人工智能十大数学知识 - 离散数学
离散数学是人工智能的底层数学基础,涵盖命题逻辑、谓词逻辑、集合论和函数等核心内容。命题逻辑通过真值运算和推理规则(如假言推理)支撑专家系统;谓词逻辑扩展为知识图谱的结构化表示(如全称量词∀);集合论提供分类和特征空间定义工具(如交集、幂集);函数概念则直接对应神经网络中的激活函数和损失函数。这些离散结构共同构成了AI处理逻辑推理、知识表示和数据建模的数学框架,是智能系统实现可靠决策的基础。
2025-10-29 14:43:00
854
原创 人工智能十大数学知识 - 图论
图论是处理对象关联关系的数学工具,广泛应用于AI领域。其核心概念包括顶点(实体)和边(关系),可构建社交网络、知识图谱等非欧几里得数据结构。图分为无向图、有向图、加权图等类型,在AI中常采用邻接矩阵和邻接表表示。关键定理如握手定理、连通性定理、二分图判定定理等,为社交网络分析、推荐系统、任务调度等AI应用提供理论基础。
2025-10-29 14:40:20
785
原创 人工智能十大数学知识 - 优化理论
优化理论是AI模型训练的核心,通过数学方法寻找使目标函数(如损失函数)最小的参数值。基本框架包括最小化目标函数、区分局部/全局最优解,以及无约束优化(如梯度下降)和约束优化(如拉格朗日乘数法)。无约束优化依赖泰勒展开和梯度信息,常用算法有批量梯度下降(BGD)、随机梯度下降(SGD)及其改进版(如动量法和Adam优化器),适用于深度学习等大规模参数场景。优化理论为AI模型训练提供了数学基础和高效求解工具。
2025-10-28 01:19:16
693
原创 人工智能十大数学知识 - 信息论
信息论为人工智能提供量化工具,核心概念包括熵(不确定性度量)、联合熵(多变量总不确定性)、条件熵(已知信息后的剩余不确定性)、互信息(变量相关性)和KL散度(分布差异)。熵H(X)衡量随机变量的不确定性,应用于生成模型和决策树;联合熵H(X,Y)评估多变量复杂度;条件熵H(Y|X)反映已知X后Y的不确定性,用于特征选择;互信息I(X;Y)量化变量关联强度,用于对比学习和多模态对齐;KL散度DKL(P||Q)非对称衡量分布差异,是VAE等模型的核心。这些工具为AI模型设计提供理论支撑。
2025-10-28 01:17:53
1101
原创 人工智能十大数学知识 - 概率与统计学
本文系统梳理了人工智能中概率与统计的核心知识体系。概率公理化定义(非负性、规范性、可列可加性)为AI处理不确定性提供数学基础,联合概率与边缘概率描述多维随机变量关系。条件概率与贝叶斯定理支撑从数据反推原因的AI推理过程,全概率公式实现复杂事件的概率分解。重点介绍了离散型(伯努利、二项、泊松)和连续型(正态)概率分布及其在分类、异常检测等AI任务中的应用,如二项分布用于点击率统计,泊松分布处理异常检测,正态分布在特征工程中广泛应用。这些概率统计工具构成了AI模型构建、评估和优化的理论基础。
2025-10-28 01:17:00
835
原创 人工智能十大数学知识 - 微积分
本文系统介绍了微积分的核心概念及其在AI中的应用。主要内容包括: 导数:定义、几何意义、常见函数导数公式及运算法则(加减乘除、链式法则),重点阐述了导数在神经网络反向传播和梯度下降算法中的作用; 偏导数与梯度:解释了多元函数优化的数学基础,说明梯度方向与函数变化率的关系; 微分:定义及近似计算功能; 积分:不定积分与定积分的基本概念。全文通过公式推导和AI应用实例,展示了微积分在机器学习参数优化、损失函数求导等关键环节的基础性作用。
2025-10-28 01:15:51
980
原创 php 简单下载数据库数据 导出cvs
本文展示了一个PHP脚本,用于从MySQL数据库导出用户数据到CSV文件。代码首先设置HTTP头信息指定CSV文件格式和文件名(使用当前时间戳命名)。然后连接MySQL数据库,查询mysql.user表中的Host、User和authentication_string字段。通过逐行读取查询结果,将数据转换为GB2312编码后写入输出流,并每10万行刷新缓冲区以提高性能。最终生成的CSV文件可直接下载,包含Host和User两列数据。
2025-10-01 10:31:21
103
原创 mysql 时间处理
MySQL Date/Time to Str(日期/时间转换为字符串)函数:date_format(date,format), time_format(time,format)L adddate(), addtime()函数,可以用 date_add() 来替代。sysdate() 日期时间函数跟 now() 类似,不同之处在于:now() 在执行开始时值就得到了, sysdate() 在函数执行时动态得到值。|%D| 带有英语后缀的该月日期 (0th, 1st, 2nd, 3rd, ...)|
2025-08-03 18:31:34
966
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅