-XX:+UseConcMarkSweepGC
-XX:CMSInitiatingOccupancyFraction=70
-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses
-XX:+CMSClassUnloadingEnabled
-XX:+ParallelRefProcEnabled
在重新标记之前对年轻代做一次minor GC
-XX:+CMSScavengeBeforeRemark
使用了-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses或-XX:+ExplicitGCInvokesConcurrent参数,在进行 Full GC 的时候,比如执行 System.gc() 操作,会触发 CMS GC,以此来提高 GC 效率。
以下是启用 CMS 后摘的一段 GC 日志,由于内容过长,下面我就直接在日志上做注释了。
System.gc() 触发一次 Full GC
-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses 参数
导致Full GC 以 CMS GC 方式执行
先由 ParNew 收集器回收年轻代
2019-12-03T16:43:03.179-0800: [GC (System.gc()) 2019-12-03T16:43:03.179-0800: [ParNew: 3988K->267K(9216K), 0.0091869 secs] 3988K->919K(19456K), 0.0092257 secs] [Times: user=0.02 sys=0.00, real=0.01 secs]
初始标记阶段,标记那些直接被 GC root 引用或者被年轻代存活对象所引用的所有对象
老年代当前使用 651K
老年代可用大小 10240K=10M
当前堆内存使用量 919K
当前堆可用内存 19456K=19M
“1 CMS-initial-mark” 这里的 1 表示老生代
2019-12-03T16:43:03.189-0800: [GC (CMS Initial Mark) [1 CMS-initial-mark: 651K(10240K)] 919K(19456K), 0.0002156 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
并发标记开始
标记所有存活的对象,它会根据上个阶段找到的 GC Roots 遍历查找
2019-12-03T16:43:03.189-0800: [CMS-concurrent-mark-start]
并发标记阶段耗时统计
2019-12-03T16:43:03.190-0800: [CMS-concurrent-mark: 0.001/0.001 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
并发预清理阶段开始
在上述并发标记过程中,一些对象的引用可能会发生变化,JVM 会将包含这个对象的区域(Card)标记为 Dirty
在此阶段,能够从 Dirty 对象到达的对象也会被标记,这个标记做完之后,dirty card 标记就会被清除了
2019-12-03T16:43:03.190-0800: [CMS-concurrent-preclean-start]
并发预清理耗时统计
2019-12-03T16:43:03.190-0800: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
重新标记阶段,目的是完成老年代中所有存活对象的标记
上一阶段是并发执行的,在执行过程中对象的引用关系还会发生变化,所以再次标记
因为配置了 -XX:+CMSScavengeBeforeRemark 参数,所以会在标记发生一次 Minor GC
进行一次Minor GC,完成后年轻代可用空间 267K,年轻代总大小9216K
2019-12-03T16:43:03.190-0800: [GC (CMS Final Remark) [YG occupancy: 267 K (9216 K)]
更详细的年轻代收集情况
2019-12-03T16:43:03.190-0800: [GC (CMS Final Remark) 2019-12-03T16:43:03.190-0800: [ParNew: 267K->103K(9216K), 0.0021800 secs] 919K->755K(19456K), 0.0022127 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
在程序暂停时重新进行扫描(Rescan),以完成存活对象的标记
2019-12-03T16:43:03.192-0800: [Rescan (parallel) , 0.0002866 secs]
第一子阶段:处理弱引用
2019-12-03T16:43:03.193-0800: [weak refs processing, 0.0015605 secs]
第二子阶段:卸载不适用的类
2019-12-03T16:43:03.194-0800: [class unloading, 0.0010847 secs]
第三子阶段:清理持有class级别 metadata 的符号表(symbol tables),以及内部化字符串对应的 string tables
完成后老年代使用量为651K(老年代总大小10240K=10M)
整个堆使用量 755K(总堆大小19456K=19M)
2019-12-03T16:43:03.195-0800: [scrub symbol table, 0.0015690 secs]
2019-12-03T16:43:03.197-0800: [scrub string table, 0.0003786 secs][1 CMS-remark: 651K(10240K)] 755K(19456K), 0.0075058 secs] [Times: user=0.01 sys=0.01, real=0.00 secs]
#开始并发清理 清除未被标记、不再使用的对象以释放内存空间
2019-12-03T16:43:03.198-0800: [CMS-concurrent-sweep-start]
#并发清理阶段耗时
2019-12-03T16:43:03.198-0800: [CMS-concurrent-sweep: 0.001/0.001 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
开始并发重置,重置CMS算法相关的内部数据, 为下一次GC循环做准备
2019-12-03T16:43:03.198-0800: [CMS-concurrent-reset-start]
重置耗时
2019-12-03T16:43:03.199-0800: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
下面是执行 jmap -histo:live 命令触发的 Full GC
GC 类型是 Full GC
触发原因是 Heap Inspection Initiated GC
CMS收集老年代:从清理前的650K变为清理后的617K,总的老年代10M,耗时0.0048490秒
总堆使用大小由 1245K变为617K,总堆19M
metaspace: 3912K变为3912K,
metaspace 总大小显示为 CompressedClassSpaceSize +(2*InitialBootClassLoaderMetaspaceSize)
2019-12-03T16:43:20.115-0800: [Full GC (Heap Inspection Initiated GC) 2019-12-03T16:43:20.115-0800: [CMS: 650K->617K(10240K), 0.0048490 secs] 1245K->617K(19456K), [Metaspace: 3912K->3912K(1056768K)], 0.0049050 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
以上就是对 CMS 垃圾收集器产生日志的分析,因为过程复杂,所以产生的日志内容也比较多。
G1 收集器
G1 收集器是在 JDK 7 版本中就已经正式推出,并且作为 JDK 9 默认的垃圾收集器。
Parallel Scavenge:我追求高吞吐量,现在社会什么最重要,效率呀,有没有。
CMS:效率固然重要,极致的用户体验才是王道啊,不能让用户等啊,不能等啊,低停顿、即时响应是我毕生追求。
G1(一脸不屑):有句话不只当讲不当讲,首先声明没有恶意,我想说,在座的各位都是垃圾。上面两位说的,我全都有,是的,全都有。 (ps:结果被打)
以上纯属开个玩笑,只是为了说明 G1 在满足了低停顿的同时也保证了高吞吐量,适用于多核处理器、大内存容量的服务端系统。
G1 是 CMS 的替代版本,具有如下特点:
-
横跨年轻代和老年代,不需要其他收集器配合;
-
并发收集器,可以与用户线程并发执行;
-
会压缩内存碎片;
-
可预测的停顿时间与高吞吐量;
与其他的垃圾收集器不同,G1 对堆内存做了不一样的规划,虽然还是使用分代策略,分为老年代、年轻代,年轻代又分为 Eden、Survivior 区,但是只是逻辑划分,物理上并不连续。它是将堆内存分为一系列大小在1M-32M 不等的 Region 区,通过下方的图可以直观的看出效果。

image
G1 垃圾收集包括年轻代收集和老年代收集两部分。
年轻代比较简单,收集器如果检测到存活区对象存活时间达到阈值,就会将这些存活对象转移到新的 Survivor 区或老年代,此过程会导致 stop the world。
老年代的收集就比较复杂了,包括如下几个阶段:
-
初始标记阶段(Initial Marking Phase),会导致 stop the wrold;
-
根区域扫描(Root Region Scan),与应用程序并发执行;
-
根区域扫描(Root Region Scan),与应用程序并发执行;
-
并发标记(Concurrent Marking),与应用程序并发执行;
-
最终标记(Remark),会导致 stop the wrold;
-
复制/清除(Copying/Cleanup),会导致 stop the wrold;
开启 G1 收集器的参数如下:
-XX:+UseG1GC
-XX:MaxGCPauseMillis=100
使用 G1 收集器时,一般不设置年轻代的大小。
以下是一次 G1 收集的日志,简单的分析直接写到下面的日志内了。
进行了一次年轻代 GC,耗时0.0008029S
[GC pause (G1 Humongous Allocation) (young), 0.0008029 secs]
4个GC线程并行执行
[Parallel Time: 0.5 ms, GC Workers: 4]
GC 线程耗时统计,反应收集的稳定性和效率
[GC Worker Start (ms): Min: 90438.1, Avg: 90438.2, Max: 90438.4, Diff: 0.3]
扫描堆外内存耗时统计
[Ext Root Scanning (ms): Min: 0.0, Avg: 0.2, Max: 0.2, Diff: 0.2, Sum: 0.6]
更新和扫描RSets 耗时统计
[Update RS (ms): Min: 0.0, Avg: 0.1, Max: 0.2, Diff: 0.2, Sum: 0.2]
[Processed Buffers: Min: 0, Avg: 0.2, Max: 1, Diff: 1, Sum: 1]
[Scan RS (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0]
#扫描堆中的 root 对象耗时统计
[Code Root Scanning (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0]
拷贝存活对象耗时统计
[Object Copy (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.1]
GC 线程确保自身安全停止耗时统计
[Termination (ms): Min: 0.0, Avg: 0.1, Max: 0.2, Diff: 0.2, Sum: 0.5]
[Termination Attempts: Min: 1, Avg: 1.0, Max: 1, Diff: 0, Sum: 4]
[GC Worker Other (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0]
GC的worker 线程的工作时间总计
[GC Worker Total (ms): Min: 0.1, Avg: 0.4, Max: 0.5, Diff: 0.3, Sum: 1.5]
GC的worker 线程完成作业的时间统计
[GC Worker End (ms): Min: 90438.6, Avg: 90438.6, Max: 90438.6, Diff: 0.0]
修复GC期间code root指针改变的耗时
[Code Root Fixup: 0.0 ms]
清除code root耗时
[Code Root Purge: 0.0 ms]
清除card tables 中的dirty card的耗时
[Clear CT: 0.0 ms]
其他方面比如选择CSet、处理已用对象、引用入ReferenceQueues、释放CSet中的region等的耗时
[Other: 0.3 ms]
[Choose CSet: 0.0 ms]
[Ref Proc: 0.1 ms]
[Ref Enq: 0.0 ms]
[Redirty Cards: 0.0 ms]
[Humongous Register: 0.0 ms]
[Humongous Reclaim: 0.0 ms]
[Free CSet: 0.0 ms]
收集前 Eden区使用量 1024K(总容量9216K),收集后容量0B(总容量9216K)
Survivors 区收集前后的大小
堆空间收集前使用量13.4M(总量20M),收集后650.2K
[Eden: 1024.0K(9216.0K)->0.0B(9216.0K) Survivors: 1024.0K->1024.0K Heap: 13.4M(20.0M)->650.2K(20.0M)]
[Times: user=0.00 sys=0.00, real=0.00 secs]
初始标记阶段,耗时0.0031800s
2019-12-03T16:48:25.456-0800: [GC pause (G1 Humongous Allocation) (young) (initial-mark), 0.0031800 secs][Parallel Time: 2.5 ms, GC Workers: 4]
[GC Worker Start (ms): Min: 4115.2, Avg: 4115.4, Max: 4115.8, Diff: 0.6]
…
[Eden: 3072.0K(10.0M)->0.0B(9216.0K) Survivors: 0.0B->1024.0K Heap: 9216.0K(20.0M)->744.0K(20.0M)]
[Times: user=0.01 sys=0.00, real=0.00 secs]
Root区扫描
2019-12-03T16:48:25.460-0800: [GC concurrent-root-region-scan-start]
2019-12-03T16:48:25.462-0800: [GC concurrent-root-region-scan-end, 0.0024198 secs]
并发标记
2019-12-03T16:48:25.462-0800: [GC concurrent-mark-start]
小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Java工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。



由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注Java)

最后
很多程序员,整天沉浸在业务代码的 CRUD 中,业务中没有大量数据做并发,缺少实战经验,对并发仅仅停留在了解,做不到精通,所以总是与大厂擦肩而过。
我把私藏的这套并发体系的笔记和思维脑图分享出来,理论知识与项目实战的结合,我觉得只要你肯花时间用心学完这些,一定可以快速掌握并发编程。
不管是查缺补漏还是深度学习都能有非常不错的成效,需要的话记得帮忙点个赞支持一下
整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~
mg-sFWzceuB-1710423184052)]
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注Java)
[外链图片转存中…(img-C5PHHRkA-1710423184053)]
最后
很多程序员,整天沉浸在业务代码的 CRUD 中,业务中没有大量数据做并发,缺少实战经验,对并发仅仅停留在了解,做不到精通,所以总是与大厂擦肩而过。
我把私藏的这套并发体系的笔记和思维脑图分享出来,理论知识与项目实战的结合,我觉得只要你肯花时间用心学完这些,一定可以快速掌握并发编程。
不管是查缺补漏还是深度学习都能有非常不错的成效,需要的话记得帮忙点个赞支持一下
整理不易,觉得有帮助的朋友可以帮忙点赞分享支持一下小编~
本文详细分析了CMS垃圾收集器在遇到System.gc()调用时的行为,以及与G1GC的区别,包括CMS的各个阶段、参数设置和停顿特性。同时介绍了G1GC的特点,如并发收集、低停顿和高吞吐量。
598

被折叠的 条评论
为什么被折叠?



