McCulloch 和 Pitts 的模型是1943年提出的一个简化的神经元模型,奠定了现代神经网络的基础。
如图是我们高中生物课程学习的神经元结构。
结构:
- 细胞体(Soma):包含细胞核,负责维持神经元的基本生命活动。
- 树突(Dendrites):负责接收来自其他神经元的信号。树突通常呈分支状,可以接收多个信号。
- 轴突(Axon):负责将神经元的信号传递到其他神经元或目标细胞。轴突末端有突触,用于与其他神经元连接。
神经元传递信号的过程:
树突接收来自其他神经元释放的神经递质,结合在树突上的受体会引发电信号(动作电位)。当接收到的信号强度达到阈值时,动作电位沿着轴突传递至轴突末端,促使突触释放神经递质进入突触间隙。释放的神经递质再结合下一个神经元的受体,继续传递信号。
神经网络的结构和功能受到生物神经系统的启发,旨在模拟人脑处理信息的方式。
-
神经元的数学模型:
- McCulloch 和 Pitts 将神经元视为一个逻辑单元,能够接收多个输入,并根据这些输入产生一个输出。每个输入可以视为一个二进制信号(0或1),表示激活或未激活状态。
-
加权输入:
- 每个输入信号可以被赋予一个权重(尽管在最初的模型中,权重通常是相同的)。神经元会对接收到的所有输入信号进行加权求和。
-
阈值:
- 神经元设定一个阈值,当加权输入的总和达到或超过这个阈值时,神经元会被激活,输出一个信号(通常为1)。如果总和低于阈值,则神经元不激活,输出为0。
-
逻辑功能:
- 这个模型可以实现基本的逻辑运算,例如与(AND)、或(OR)和非(NOT)运算。多个神经元可以组合在一起形成更复杂的逻辑电路。
-
连接性:
- McCulloch 和 Pitts 的模型强调神经元之间的连接性,通过连接不同的神经元,可以构建出复杂的网络,从而实现更高层次的计算和处理。
由多个 McCulloch 和 Pitts 的模型连接起来形成的网络可以被视为一个简单的神经网络,能够执行更复杂的逻辑运算和信息处理。