深度学习与神经网络课程学习总结【3】

一、数据集与评价指标

1.1算法评估相关概念

TP: 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数

FP: 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数

FN:被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数

TN: 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数

1.2AP计算

二、目标检测与YOLO

2.1目标检测问题

目标检测是在给定的图片中精确找到物体所在位置,并标注出物体的类别。 物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,并且物体还可以是多个类别。

2.2目标检测问题的方法

三、语义分割

3.1深度学习图像分割算法发展

3.2语义分割基本思想

语义分割:找到同一画面中的不同类型目标区域。

3.3FCN网络结构

四、风格迁移

4.1简介

如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不同的组合, 其复杂程度不亚于模型调参。 在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即风格迁移。 这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修改内容图像使其在样式上接近样式图像。

4.2方法

首先,我们初始化合成图像,例如将其初始化成内容图像。该合成图像是样式迁移过程中唯一需要更新的变量,即样式迁移所需迭代的模型参数。

然后,我们选择一个预训练的卷积神经网络来抽取图像的特征,其中的模型参数在训练中无须更新。深度卷积神经网络凭借多个层逐级抽取图像的特征。我们可以选择其中某些层的输出作为内容特征或样式特征。

4.3总结

样式迁移常用的损失函数由3部分组成:

内容损失使合成图像与内容图像在内容特征上接近,

样式损失令合成图像与样式图像在样式特征上接近,

而总变差损失则有助于减少合成图像中的噪点。

可以通过预训练的卷积神经网络来抽取图像的特征,并通过最小化损失函数来不断更新合成图像。 用格拉姆矩阵表达样式层输出的样式。

五、视觉应用展望

5.1生成对抗网络

生成对抗网络(GANs, generative adversarial networks)是由Ian Goodfellow等人在2014年的Generative Adversarial Networks一文中提出。 模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。 原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为G和D。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。

5.2大规模语言图像模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值