自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 深度学习回归项目实战-患病人数预测(李哥lesson3)

继承nn类,在此基础之上创建自己的网络模型结构,输入x,输出预测值。

2025-01-22 13:45:27 839

原创 简单线性回归代码实战(李哥lesson2)

由于很多时候数据集是非常之大的,所以每次训练时,只取数据集中的一部分可以很好的节省算力资源,也能达到更好的效果,训练网络时,一般一次只取一个batchsize大小的数据进行训练。第四步:搞定y的预测值计算函数,搞定Loss函数和反向传播(也就是从后往前计算每个参数的梯度,又名梯度回传),搞定梯度下降。在前两篇文章中我们了解了神经网络工作的方式,现在是时候将理论落到实处了。上图是我们今天想要实现的网络模型,输入输出全部采用随机生成。第五步:万事俱备,开始写训练操作。第二步:创建训练用的数据。

2025-01-20 15:01:41 509

原创 由单个神经元到神经网络,简单全连接神经网络工作解析(李哥 lesson1)

很简单,让直线“变软”就行了,这就是激活函数干的事情:让直线“变软”使其能过拟合非线性函数,在每个神经元得出结果后,将在这个结果输入激活函数,然后再把他传到下一层神经元。前面两部分其实就是神经网络前向传播的全过程,接下来我们来研究神经网络中的optimization,也就是反向传播与梯度下降。在上个文章我们知道了单个神经元的具体架构,这次我们将从单个神经元出发,探寻简单全连接神经网络的工作过程。的运算结果其实和一个神经元的情况下似乎没有差别,其实用大白话来讲就是无论多少根直线加在一起,结果还是直线。

2025-01-18 14:56:25 892

原创 三种机器学习方法 与 深度学习基础的概观 和 神经元的简要介绍(李哥 lesson 0)

(假设本神经元模型为(y1=wx+b))神经元的作用就是根据给定的y和x,用神经元模型算出预测值y1(y1 = wx+b),再通过损失函数算出Loss(其实就是预测值y1与y的差距),然后梯度下降优化w和b的值(对损失函数求w和b的偏导,然后用初始的w/b-学习率*w/b的偏导。神经网络就是由一个个神经元构成的,每一个神经元都是一个小函数,所有小函数一起构成了神经网络,也就是最终的大函数,那个可以得到F(x) = y的函数。可以理解为此类算法所使用的数据都是经过人为标签过的(“label”)。

2025-01-17 16:46:48 388

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除