AcWing周赛62场总结

本文介绍了三道编程题目,分别涉及哈希表在寻找特定序列、卡牌兑换及集合操作中的应用。第一题中,通过哈希表记录元素首次出现位置,判断连续元素是否满足特定条件。第二题利用哈希表预处理并实时更新满足兑换条件的状态。第三题通过哈希表和前缀和找到使最大值与平均值之差最大的子集。这些解题策略展示了哈希表在解决集合操作问题时的效率和灵活性。
摘要由CSDN通过智能技术生成

一、4500.三个元素

1、原题链接:4500. 三个元素 - AcWing题库

2、解题思路:

        首先,用哈希表保存每个元素第一次出现的下标,用set去重后存入到数组中。然后,对三个连续的元素判定是否存在 ra<rb<rc 成立。最后,输出满足条件的我们记录的下标即可。

3、参考代码:

#include <bits/stdc++.h>

using namespace std;

const int N = 3010;

int a[N];

unordered_map<int, int> b;
set<int> st;

int main()
{
    int n;
    cin >> n;
    
    for(int i = 1; i <= n; i ++) {
        int x;
        cin >> x;
        st.insert(x);
        if(!b[x]) b[x] = i;
    }
    
    int i = 1;
    for(auto c: st) a[i ++] = c;
    
    int m = st.size();
    
    bool flag = true;
    for(int i = 1; i <= m - 2; i ++) {
        if(a[i + 2] - a[i + 1] && a[i + 1] - a[i]) {
            cout << b[a[i]] << ' ' << b[a[i + 1]] << ' ' << b[a[i + 2]];
            flag = false;
            break;
        }
    }
    
    if(flag) cout << -1 << ' ' << -1 << ' ' << -1 << endl;
    return 0;
}

二、4501.收集卡牌

1、原题链接:4501. 收集卡牌 - AcWing题库

2、解题思路:

        首先,用一个哈希表做一个预处理,使得1~n每个编号都存在。然后,再用另一个哈希表保存输入的编号,当两个哈希表的大小相等时,说明当前满足可以兑换奖品的条件,我们需要使得第二个哈希表的每个编号的元素的数量减 1 ,若某个编号的数量为0,则删除该编号。

3、参考代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <unordered_map>

using namespace std;


int main()
{
    int n, m;
    cin >> n >> m;
    
    unordered_map<int, int> mp, cmp;
    
    for(int i = 1; i <= n; i ++ ) cmp[i] = 1;
    
    for(int i = 1; i <= m; i ++ ) {
        int x;
        cin >> x;
        mp[x] ++;
        
        if(mp.size() == cmp.size()) {
            cout << 1;
            for(int i = 1; i <= n; i ++) {
                mp[i] --;
                if(mp[i] == 0) mp.erase(i);
            }
        }
        else cout << 0;
    }
    
    return 0;
}

三、4502.集合操作

1、原题链接:4502. 集合操作 - AcWing题库

2、解题思路:

        要使得 max(s)−mean(s) 的值应尽可能大,那么就意味着要使得在确定max(s)后,mean(s)的值尽可能小,也就意味着每次加入到子集s中的元素要小于当前子集的平均数。

        因为存到集合中的元素是递增的,所以子集s一定是某个连续的子集 + 最大值xi。当计算x(i+1)为最大值和某个连续的子集所组成的子集得到的 max(s)−mean(s) 的值时,若前缀和相等,那么 max(s)−mean(s) 的值一定比之前大。

3、参考代码:

#include <bits/stdc++.h>

using namespace std;

const int N = 5e5 + 10;

int ans[N];

int main()
{
    int n, m = 0;
    cin >> n;
    
    double res = 0, sum = 0;
    int k = 0;
    while (n -- ) {
        int a;
        cin >> a;
        
        if(a == 1) {
            int x;
            cin >> x;
            ans[++ m] = x;
            
            while(k + 1 <= m && ans[k + 1] <= (sum + ans[m]) / (k + 1))
                sum += ans[++ k];
            res = max(res, ans[m] - (sum + ans[m]) / (k + 1));
        }
        else {
            printf("%lf\n", res);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值