一、4500.三个元素
1、原题链接:4500. 三个元素 - AcWing题库
2、解题思路:
首先,用哈希表保存每个元素第一次出现的下标,用set去重后存入到数组中。然后,对三个连续的元素判定是否存在 ra<rb<rc 成立。最后,输出满足条件的我们记录的下标即可。
3、参考代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 3010;
int a[N];
unordered_map<int, int> b;
set<int> st;
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i ++) {
int x;
cin >> x;
st.insert(x);
if(!b[x]) b[x] = i;
}
int i = 1;
for(auto c: st) a[i ++] = c;
int m = st.size();
bool flag = true;
for(int i = 1; i <= m - 2; i ++) {
if(a[i + 2] - a[i + 1] && a[i + 1] - a[i]) {
cout << b[a[i]] << ' ' << b[a[i + 1]] << ' ' << b[a[i + 2]];
flag = false;
break;
}
}
if(flag) cout << -1 << ' ' << -1 << ' ' << -1 << endl;
return 0;
}
二、4501.收集卡牌
1、原题链接:4501. 收集卡牌 - AcWing题库
2、解题思路:
首先,用一个哈希表做一个预处理,使得1~n每个编号都存在。然后,再用另一个哈希表保存输入的编号,当两个哈希表的大小相等时,说明当前满足可以兑换奖品的条件,我们需要使得第二个哈希表的每个编号的元素的数量减 1 ,若某个编号的数量为0,则删除该编号。
3、参考代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <unordered_map>
using namespace std;
int main()
{
int n, m;
cin >> n >> m;
unordered_map<int, int> mp, cmp;
for(int i = 1; i <= n; i ++ ) cmp[i] = 1;
for(int i = 1; i <= m; i ++ ) {
int x;
cin >> x;
mp[x] ++;
if(mp.size() == cmp.size()) {
cout << 1;
for(int i = 1; i <= n; i ++) {
mp[i] --;
if(mp[i] == 0) mp.erase(i);
}
}
else cout << 0;
}
return 0;
}
三、4502.集合操作
1、原题链接:4502. 集合操作 - AcWing题库
2、解题思路:
要使得 max(s)−mean(s) 的值应尽可能大,那么就意味着要使得在确定max(s)后,mean(s)的值尽可能小,也就意味着每次加入到子集s中的元素要小于当前子集的平均数。
因为存到集合中的元素是递增的,所以子集s一定是某个连续的子集 + 最大值xi。当计算x(i+1)为最大值和某个连续的子集所组成的子集得到的 max(s)−mean(s) 的值时,若前缀和相等,那么 max(s)−mean(s) 的值一定比之前大。
3、参考代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
int ans[N];
int main()
{
int n, m = 0;
cin >> n;
double res = 0, sum = 0;
int k = 0;
while (n -- ) {
int a;
cin >> a;
if(a == 1) {
int x;
cin >> x;
ans[++ m] = x;
while(k + 1 <= m && ans[k + 1] <= (sum + ans[m]) / (k + 1))
sum += ans[++ k];
res = max(res, ans[m] - (sum + ans[m]) / (k + 1));
}
else {
printf("%lf\n", res);
}
}
return 0;
}