题目描述:
给你一个整数数组
nums
,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
思路和算法:
代码1:
int maxProduct(vector<int>& nums) {
vector <int> maxF(nums), minF(nums);
for (int i = 1; i < nums.size(); ++i) {
maxF[i] = max(maxF[i - 1] * nums[i], max(nums[i], minF[i - 1] * nums[i]));
minF[i] = min(minF[i - 1] * nums[i], min(nums[i], maxF[i - 1] * nums[i]));
}
return *max_element(maxF.begin(), maxF.end());
}
易得这里的渐进时间复杂度和渐进空间复杂度都是O(n)。
优化代码:
int maxProduct(vector<int>& nums) {
int maxF = nums[0], minF = nums[0], ans = nums[0];
for (int i = 1; i < nums.size(); ++i) {
int mx = maxF, mn = minF;
maxF = max(mx * nums[i], max(nums[i], mn * nums[i]));
minF = min(mn * nums[i], min(nums[i], mx * nums[i]));
ans = max(maxF, ans);
}
return ans;
}
复杂度分析
记 nums 元素个数为 n。
- 时间复杂度:程序一次循环遍历了 nums,故渐进时间复杂度为O(n)。
- 空间复杂度:优化后只使用常数个临时变量作为辅助空间,与 n 无关,故渐进空间复杂度为 O(1)。