动态规划每日一练(3)

打家劫舍
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
在这里插入图片描述

题解:如果房屋数量大于两间,应该如何计算能够偷窃到的最高总金额呢?对于第 k~(k>2)k (k>2) 间房屋,有两个选项:
(1)偷窃第 kk 间房屋,那么就不能偷窃第 k-1k−1 间房屋,偷窃总金额为前 k-2k−2 间房屋的最高总金额与第 kk 间房屋的金额之和。
(2)不偷窃第 kk 间房屋,偷窃总金额为前 k-1k−1 间房屋的最高总金额。
dp[i]=max(dp[i−2]+nums[i],dp[i−1])

class Solution {
public:
    int rob(vector<int>& nums) {
        int n=nums.size();
        if(n==0)
        {
            return 0;
        }
        if(n==1)
        {
            return nums[0];
        }
        vector<int>dp(n+1);
        dp[0]=nums[0];
        dp[1]=max(nums[0],nums[1]);
        for(int i=2;i<n;i++)
        {
            dp[i]=max(dp[i-1],dp[i-2]+nums[i]);
        }
        return dp[n-1];
    }
};

在上述题目中加入一个条件:第一个房子挨着最后一个房子,即房子围成一个圆,问题又该如何解决?

解题:可以理解为第一个房间和第二个房间不能同时进入,这时候可以分为两个部分,有第一个无最后一个房间和有最后一个房间没有第一个房间,再比较他们之间的较大值

class Solution {
public:
    int robfun(vector<int>& nums,int start,int end)
    {   
        int first=nums[start];
        int second=max(nums[start+1],nums[start]);
        for(int i=start+2;i<=end;i++)
        {   
            int cur=second;
            second=max(second,first+nums[i]);
            first=cur;
        }
        return second;
    }
    int rob(vector<int>& nums) {
        int n=nums.size();
        if(n==0)
        {
            return 0;
        }
        if(n==1)
        {
            return nums[0];
        }
        if(n==2)
        {
            return max(nums[0],nums[1]);
        }
        return max(robfun(nums,0,n-2),robfun(nums,1,n-1));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星星21211

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值