第8章:掌控现金流——Python赋能企业流动资产管理

第8章 企业流动资产管理

8.1 流动资产概述

8.1.1 流动资产分类

  • 现金及现金等价物
  • 应收账款
  • 存货
  • 短期投资
# 数据结构示例:
# current_assets = pd.DataFrame({
#     '现金': [float],  # 现金金额
#     '应收账款': [float],  # 应收账款金额
#     '存货': [float],  # 存货金额
#     '短期投资': [float]  # 短期投资金额
# })

import pandas as pd

# 流动资产分类分析
def current_assets_classification(data):
    """
    流动资产分类分析函数
    功能:计算并分析各类流动资产占比
    参数:
        data: DataFrame,包含现金、应收账款等流动资产数据
    返回:
        字典,包含各类流动资产占比
    """
    total_assets = data.sum().sum()
    cash_ratio = data['现金'].sum() / total_assets
    receivables_ratio = data['应收账款'].sum() / total_assets
    inventory_ratio = data['存货'].sum() / total_assets
    investments_ratio = data['短期投资'].sum() / total_assets
    
    return {
        '现金占比': cash_ratio,
        '应收账款占比': receivables_ratio,
        '存货占比': inventory_ratio,
        '短期投资占比': investments_ratio
    }

# 示例数据
current_assets_data = pd.DataFrame({
    '现金': [500000, 550000, 600000],
    '应收账款': [300000, 320000, 350000],
    '存货': [200000, 180000, 220000],
    '短期投资': [100000, 120000, 150000]
})

# 执行流动资产分类分析
assets_analysis = current_assets_classification(current_assets_data)
print("\n流动资产分类分析结果:")
for key, value in assets_analysis.items():
    print(f"{key}: {value:.2%}")

8.1.2 流动资产特点

  • 流动性强
  • 周转速度快
  • 变现能力强
  • 风险相对较低
# 流动资产周转分析
def current_assets_turnover(data):
    """
    流动资产周转分析函数
    功能:计算流动资产周转率
    参数:
        data: DataFrame,包含流动资产和营业收入数据
    返回:
        Series,包含流动资产周转率
    """
    return data['营业收入'] / data['流动资产']

# 示例数据
turnover_data = pd.DataFrame({
    '流动资产': [1000000, 1050000, 1100000],
    '营业收入': [2000000, 2200000, 2400000]
})

# 计算周转率
turnover_data['周转率'] = current_assets_turnover(turnover_data)
print("\n流动资产周转率:")
print(turnover_data[['流动资产', '营业收入', '周转率']])

8.2 现金管理

8.2.1 最佳现金持有量

  • 成本分析模型
  • 存货模型
  • 随机模型
# 最佳现金持有量计算
def optimal_cash_balance(data):
    """
    最佳现金持有量计算函数
    功能:使用存货模型计算最佳现金持有量
    参数:
        data: DataFrame,包含交易成本、利率和现金需求数据
    返回:
        Series,包含最佳现金持有量
    """
    return ((2 * data['交易成本'] * data['现金需求']) / data['利率']) ** 0.5

# 示例数据
cash_data = pd.DataFrame({
    '交易成本': [100, 120, 150],
    '现金需求': [500000, 550000, 600000],
    '利率': [0.05, 0.06, 0.07]
})

# 计算最佳现金持有量
cash_data['最佳持有量'] = optimal_cash_balance(cash_data)
print("\n最佳现金持有量:")
print(cash_data)

8.2.2 现金预算

  • 现金流入预测
  • 现金流出预测
  • 现金余缺管理
# 现金预算分析
def cash_budget_analysis(data):
    """
    现金预算分析函数
    功能:分析现金流入流出及余缺
    参数:
        data: DataFrame,包含现金流入、流出数据
    返回:
        DataFrame,包含现金预算分析结果
    """
    data['现金余缺'] = data['现金流入'] - data['现金流出']
    data['累计余缺'] = data['现金余缺'].cumsum()
    return data

# 示例数据
cash_budget_data = pd.DataFrame({
    '现金流入': [500000, 550000, 600000],
    '现金流出': [450000, 500000, 550000]
})

# 执行现金预算分析
budget_analysis = cash_budget_analysis(cash_budget_data)
print("\n现金预算分析结果:")
print(budget_analysis)

8.3 应收账款管理

8.3.1 信用政策

  • 信用标准
  • 信用条件
  • 收账政策
# 信用政策分析
def credit_policy_analysis(data):
    """
    信用政策分析函数
    功能:分析不同信用政策下的应收账款周转情况
    参数:
        data: DataFrame,包含应收账款、销售收入数据
    返回:
        Series,包含应收账款周转天数
    """
    return (data['应收账款'] / data['销售收入']) * 365

# 示例数据
credit_data = pd.DataFrame({
    '应收账款': [300000, 320000, 350000],
    '销售收入': [1500000, 1600000, 1700000]
})

# 计算应收账款周转天数
credit_data['周转天数'] = credit_policy_analysis(credit_data)
print("\n应收账款周转天数:")
print(credit_data)

8.3.2 应收账款监控

  • 账龄分析
  • 坏账准备
  • 催收策略
# 应收账款账龄分析
def accounts_receivable_aging(data):
    """
    应收账款账龄分析函数
    功能:分析应收账款账龄结构
    参数:
        data: DataFrame,包含不同账龄段的应收账款
    返回:
        Series,包含各账龄段占比
    """
    total_receivables = data.sum().sum()
    return data.sum() / total_receivables

# 示例数据
aging_data = pd.DataFrame({
    '0-30天': [200000, 220000, 240000],
    '31-60天': [80000, 75000, 70000],
    '61-90天': [20000, 25000, 30000],
    '90天以上': [10000, 15000, 20000]
})

# 执行账龄分析
aging_analysis = accounts_receivable_aging(aging_data)
print("\n应收账款账龄分析:")
print(aging_analysis)

8.4 存货管理

8.4.1 经济订货批量

  • 基本模型
  • 数量折扣模型
  • 允许缺货模型
# 经济订货批量计算
def economic_order_quantity(data):
    """
    经济订货批量计算函数
    功能:计算经济订货批量
    参数:
        data: DataFrame,包含年需求量、订货成本、持有成本
    返回:
        Series,包含经济订货批量
    """
    return ((2 * data['年需求量'] * data['订货成本']) / data['持有成本']) ** 0.5

# 示例数据
eoq_data = pd.DataFrame({
    '年需求量': [10000, 12000, 15000],
    '订货成本': [500, 550, 600],
    '持有成本': [20, 25, 30]
})

# 计算经济订货批量
eoq_data['经济订货量'] = economic_order_quantity(eoq_data)
print("\n经济订货批量:")
print(eoq_data)

8.4.2 存货控制

  • ABC分类法
  • 适时制(JIT)
  • 安全库存
# ABC分类分析
def abc_classification(data):
    """
    ABC分类分析函数
    功能:对存货进行ABC分类
    参数:
        data: Series,包含各类存货金额
    返回:
        Series,包含ABC分类结果
    """
    total_value = data.sum()
    sorted_data = data.sort_values(ascending=False)
    cumulative_percentage = sorted_data.cumsum() / total_value
    
    classification = pd.Series(index=data.index)
    classification[cumulative_percentage <= 0.8] = 'A'
    classification[(cumulative_percentage > 0.8) & (cumulative_percentage <= 0.95)] = 'B'
    classification[cumulative_percentage > 0.95] = 'C'
    
    return classification

# 示例数据
inventory_data = pd.Series({
    '原材料A': 500000,
    '原材料B': 300000,
    '原材料C': 200000,
    '原材料D': 100000,
    '原材料E': 50000
})

# 执行ABC分类
abc_result = abc_classification(inventory_data)
print("\n存货ABC分类结果:")
print(abc_result)

8.5 某企业流动资产管理案例

8.5.1 数据准备

  • 数据收集
  • 数据清洗
  • 特征工程
# 企业流动资产管理数据准备
def prepare_current_assets_data(data):
    """
    企业流动资产管理数据准备函数
    功能:清洗数据并创建新特征
    参数:
        data: DataFrame,原始企业流动资产管理数据
    返回:
        DataFrame,处理后的企业流动资产管理数据
    处理步骤:
        1. 数据清洗:去除空值和无效数据
        2. 特征工程:创建流动资产周转率、应收账款周转天数等新特征
        3. 特征缩放:标准化流动资产相关特征
    """
    # 数据清洗
    data = data.dropna()
    data = data[data['流动资产'] > 0]  # 过滤无效数据
    
    # 特征工程
    data['流动资产周转率'] = data['营业收入'] / data['流动资产']
    data['应收账款周转天数'] = (data['应收账款'] / data['营业收入']) * 365
    
    # 特征缩放
    scaler = StandardScaler()
    scaled_features = scaler.fit_transform(data[['现金', '应收账款', '存货']])
    data[['现金', '应收账款', '存货']] = scaled_features
    
    return data

# 示例数据
enterprise_current_assets_data = pd.DataFrame({
    '现金': [500000, 550000, 600000],
    '应收账款': [300000, 320000, 350000],
    '存货': [200000, 180000, 220000],
    '营业收入': [1500000, 1600000, 1700000],
    '流动资产': [1000000, 1050000, 1170000]
})

# 数据准备
prepared_current_assets_data = prepare_current_assets_data(enterprise_current_assets_data)
print("\n准备后的企业流动资产管理数据:")
print(prepared_current_assets_data)

8.5.2 分析模型

  • 流动资产预测模型
  • 流动资产效率分析模型
  • 流动资产优化模型
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 流动资产预测模型
def current_assets_prediction_model(data):
    """
    流动资产预测模型函数
    功能:建立随机森林模型预测流动资产
    参数:
        data: DataFrame,包含现金、应收账款等特征
    返回:
        训练好的随机森林模型
    处理步骤:
        1. 划分训练集和测试集
        2. 训练随机森林模型
        3. 评估模型性能
        4. 可视化预测结果
    """
    # 特征和目标变量
    X = data[['现金', '应收账款', '存货']]
    y = data['流动资产']
    
    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # 随机森林模型
    model = RandomForestRegressor(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)
    
    # 预测与评估
    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    
    print(f"\n流动资产预测模型评估:\n均方误差:{mse:.2f}")
    
    # 可视化预测结果
    plt.figure(figsize=(10,6))
    plt.scatter(y_test, y_pred)
    plt.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=2)
    plt.xlabel('实际流动资产')
    plt.ylabel('预测流动资产')
    plt.title('实际 vs 预测流动资产')
    plt.show()
    
    return model

# 执行流动资产预测
current_assets_model = current_assets_prediction_model(prepared_current_assets_data)

# 流动资产效率分析模型
def current_assets_efficiency_analysis(data):
    """
    流动资产效率分析函数
    功能:计算各项流动资产的效率指标
    参数:
        data: DataFrame,包含现金、应收账款等数据
    返回:
        Series,包含各项流动资产的效率指标
    """
    # 计算效率指标
    efficiency_metrics = {
        '现金周转率': data['营业收入'].mean() / data['现金'].mean(),
        '应收账款周转率': data['营业收入'].mean() / data['应收账款'].mean(),
        '存货周转率': data['营业收入'].mean() / data['存货'].mean()
    }
    
    return pd.Series(efficiency_metrics)

# 执行流动资产效率分析
efficiency_analysis = current_assets_efficiency_analysis(prepared_current_assets_data)
print("\n流动资产效率分析结果:")
print(efficiency_analysis)

# 流动资产优化模型
def current_assets_optimization_model(data):
    """
    流动资产优化潜力分析函数
    功能:计算各项流动资产的优化潜力
    参数:
        data: DataFrame,包含现金、应收账款等数据
    返回:
        Series,包含各项流动资产的优化潜力
    """
    # 计算优化潜力
    optimization_potential = {
        '现金优化': data['现金'].max() - data['现金'].min(),
        '应收账款优化': data['应收账款'].max() - data['应收账款'].min(),
        '存货优化': data['存货'].max() - data['存货'].min()
    }
    
    return pd.Series(optimization_potential)

# 执行流动资产优化分析
optimization_potential = current_assets_optimization_model(prepared_current_assets_data)
print("\n流动资产优化潜力分析:")
print(optimization_potential)
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/929f27a252574ca08d94729ee749b1e8.png#pic_center)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值