根据音乐波形图高低来捕捉卡点位置的方法

确实存在基于音频波形振幅变化来捕捉卡点位置的方法,这种方法特别适合强调重音、爆炸音效等明显音量变化的场景。以下是结合波形能量分析的完整解决方案:

---

### 一、核心原理
通过分析音频信号的 **RMS能量(均方根能量)** 或 **峰值振幅**,检测能量突变点(能量显著上升沿)作为视觉卡点位置。

```python
音频信号 → 分帧处理 → 计算能量 → 阈值检测 → 时间点定位
```

---

### 二、完整代码实现
```python
import librosa
import numpy as np
import matplotlib.pyplot as plt
from moviepy.editor import *

def waveform_based_cut_points(audio_path, threshold=0.2, pre_max=10, post_max=10):
    """基于波形能量的卡点检测"""
    y, sr = librosa.load(audio_path, sr=None)
    
    # 计算能量包络
    rms = librosa.feature.rms(y=y)[0]
    times = librosa.times_like(rms, sr=sr)
    
    # 寻找能量突变点
    peaks = np.where(rms > threshold * np.max(rms))[0]
    
    # 合并邻近峰值
    peaks_clean = []
    prev = -100
    for p in peaks:
        if p - prev > post_max:
            peaks_clean.append(p)
            prev = p
    
    return times[peaks_clean]

def visualize_detection(audio_path, cut_times):
    """可视化检测结果"""
    plt.figure(figsize=(15,5))
    y, sr = librosa.load(audio_path)
    librosa.display.waveshow(y, sr=sr, alpha=0.5)
    plt.vlines(cut_times, -1, 1, color='r', linestyle='--')
    plt.title('Waveform-Based Cut Points Detection')
    plt.show()

# 使用示例
audio_path = "music.mp3"
cut_times = waveform_based_cut_points(audio_path)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值