本装置采用的元器件主要有:
1.k210的maix bit开发板及其配套的摄像头,显示屏,某宝190元包邮购买。
2.FPGA开发板作为其他结构的控制及传输板(对k210不熟悉,故用其他芯片进行控制)。
3.步进电机,作为喷洒消毒装置的滑杆移动动力。
4.超声波测距仪器,测量人体身高,防止直接喷洒进口鼻。
5.红外测温装置Lu90614(串口通信)
6.lm296电机驱动模块
7.稳压电源
流程:
人脸信息存储,识别身份的同时,k210将信息发送给FPGA,FPGA收到信息以后通过超声波测距测出身高,再控制步进电机旋转对应圈数,控制雾化器进行消毒喷洒。
关于红外测温模块,利用k210与Lu90614通信并且接收温度信息显示在lcd屏幕上。
目前主要任务:1.通过fpga开发板实现k210身份信息的识别,删除,保存。利用的串口通信
Lu90614与maix bit开发板建立联系并将温度显示在配套的LCD屏幕上
以下是在K210的Maix Bit开发板上使用MicroPython实现Lu90614通信串口通信协议的代码:
from machine import UART
from fpioa_manager import fm
import lcd
# 设置UART引脚连接
fm.register(7, fm.fpioa.UART1_TX)
fm.register(6, fm.fpioa.UART1_RX)
# 初始化UART
uart = UART(UART.UART1, 9600, 8, 0, 1, timeout=1000, read_buf_len=4096)
# 初始化LCD屏幕
lcd.init()
# 发送体温模式指令
uart.write(bytes([0xFA, 0xC5, 0xBF]))
while True:
# 发送开始测温并上传温度指令
uart.write(bytes([0xFA, 0xCA, 0xC4]))
# 读取温度值回传指令
buf = uart.read(9)
if buf is not None:
# 解析温度数据
header, cmd, datah, datal, _, _, _, _, checksum = buf
if header == 0xFE and cmd == 0xAC:
temperature = (datah << 8 | datal) / 10.0
# 显示温度值
lcd.draw_string(0, 0, "Temperature: {:.1f}C".format(temperature))
实现人脸识别,温度显示,断电储存
# Untitled - By: Administrator - 周日 4月 16 2023
import sensor,image,lcd # import 相关库
import KPU as kpu #模型库
import time #定时库
import ubinascii #二进制库
import uos #文件库
from Maix import FPIOA,GPIO #GPIO库
from fpioa_manager import fm #标准库
from machine import UART #串口库
from machine import Timer #定时器库
from machine import WDT #看门狗库
from board import board_info # 导入板子信息模块
import utime # 导入微秒级时间模块
import os # 导入操作系统模块
# 设置UART引脚连接
fm.register(7, fm.fpioa.UART2_TX)
fm.register(6, fm.fpioa.UART2_RX)
fm.register(9,fm.fpioa.UART1_TX)#串口引脚映射
fm.register(10,fm.fpioa.UART1_RX)
fm.register(15, fm.fpioa.GPIO0)
# 配置BOOT按键为GPIOHS0引脚
fm.register(board_info.BOOT_KEY, fm.fpioa.GPIOHS0)
key_gpio = GPIO(GPIO.GPIOHS0, GPIO.IN)
start_processing = False
# 按键防抖时间
BOUNCE_PROTECTION = 50
# 定义按键触发函数
def set_key_state(*_):
global start_processing
start_processing = True
utime.sleep_ms(BOUNCE_PROTECTION)
# 注册按键中断
key_gpio.irq(set_key_state, GPIO.IRQ_RISING, GPIO.WAKEUP_NOT_SUPPORT)
key=GPIO(GPIO.GPIO0, GPIO.OUT)
key.value(0)
com = UART(UART.UART1, 115200, timeout=50, read_buf_len=4096)#构建串口对象
check = 0
save = 0
#看门狗回调函数
def on_wdt(self):
return
def on_timer(timer): #回调函数
global check
global save
data = []
data = com.read(2)
if data!=None:
if data == b'A':
check = 1#代表存储人脸特征
elif data == b'B':
check = 1
save = 1 #存到SD卡中
elif data == b'C':
save = 2 #清除人脸
#定时器中断初始化
tim = Timer(Timer.TIMER0, Timer.CHANNEL0, mode=Timer.MODE_ONE_SHOT, period=500,
unit=Timer.UNIT_MS,callback=on_timer, arg=on_timer,start=False)
task_fd = kpu.load(0x300000) # 从flash 0x300000 加载人脸检测模型
task_ld = kpu.load(0x400000) # 从flash 0x400000 加载人脸五点关键点检测模型
task_fe = kpu.load(0x500000) # 从flash 0x500000 加载人脸196维特征值模型
#task_fd = kpu.load("/sd/FaceDetection.smodel")
#task_ld = kpu.load("/sd/FaceLandmarkDetection.smodel")
#task_fe = kpu.load("/sd/FeatureExtraction.smodel")
clock = time.clock() # 初始化系统时钟,计算帧率
lcd.init() # 初始化lcd
lcd.rotation(0)
sensor.reset() #初始化sensor 摄像头
sensor.set_pixformat(sensor.RGB565) #设置摄像头像素
sensor.set_framesize(sensor.QVGA) #设置窗口为配套屏幕大小
sensor.set_hmirror(0) #设置摄像头镜像
sensor.set_vflip(2) #设置摄像头翻转
sensor.run(1) #使能摄像头
#使用官方库人脸检测算法
#anchor for face detect 用于人脸检测的Anchor
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
#standard face key point position 标准正脸的5关键点坐标 分别为 左眼 右眼 鼻子 左嘴角 右嘴角
dst_point = [(44,59),(84,59),(64,82),(47,105),(81,105)]
#初始化人脸检测模型
a = kpu.init_yolo2(task_fd, 0.5, 0.3, 5, anchor)
img_lcd=image.Image() # 设置显示buf
img_face=image.Image(size=(128,128)) #设置 128 * 128 人脸图片buf
a=img_face.pix_to_ai() # 将图片转为kpu接受的格式
record_ftr=[] #空列表 用于存储当前196维特征
record_ftrs=[] #空列表 用于存储按键记录下人脸特征, 可以将特征以txt等文件形式保存到sd卡后,读取到此列表,即可实现人脸断电存储。
names = ['Mr.1', 'Mr.2', 'Mr.3', 'Mr.4', 'Mr.5', 'Mr.6', 'Mr.7', 'Mr.8', 'Mr.9' , 'Mr.10'] # 人名标签,与上面列表特征值一一对应。
#写入特征点到SD卡(转换为二进制)
def save_feature(feat):
with open('/sd/data.txt','a') as f:
record =ubinascii.b2a_base64(feat)
f.write(record)
#清除人脸
def save_clear():
record_ftr = []
record_ftrs = []
with open("/sd/data.txt","w") as f:
f.write("")
f.close()
#打开文件进行读取,如果有特征点信息,将其导入存储数组中
with open('/sd/data.txt','rb') as f:
s = f.readlines()
for line in s:
#print(ubinascii.a2b_base64(line))
record_ftrs.append(bytearray(ubinascii.a2b_base64(line)))
check = 0
save = 0
# 初始化UART
uart = UART(UART.UART2, 9600, 8, 0, 1, timeout=1000, read_buf_len=4096)
# 发送体温模式指令
uart.write(bytes([0xFA, 0xC5, 0xBF]))
while(1): # 主循环
# 发送开始测温并上传温度指令
uart.write(bytes([0xFA, 0xCA, 0xC4]))
# 读取温度值回传指令
buf = uart.read(9)
if buf is not None:
# 解析温度数据
header, cmd, datah, datal, _, _, _, _, checksum = buf
if header == 0xFE and cmd == 0xAC:
temperature = (datah+datal/100)
# 显示温度值
# lcd.draw_string(50, 0, "Temperature: {:.1f}C".format(temperature))
tim.start()
img = sensor.snapshot() #从摄像头获取一张图片
clock.tick() #记录时刻,用于计算帧率
code = kpu.run_yolo2(task_fd, img) # 运行人脸检测模型,获取人脸坐标位置
key.value(0)
if save == 2:
save = 0
save_clear()
#使用看门狗进行软件复位
wdt0 = WDT(id=1, timeout=1000, callback=on_wdt, context={})
if code: # 如果检测到人脸
for i in code: # 迭代坐标框
# Cut face and resize to 128x128
a = img.draw_rectangle(i.rect()) # 在屏幕显示人脸方框
face_cut=img.cut(i.x(),i.y(),i.w(),i.h()) # 裁剪人脸部分图片到 face_cut
face_cut_128=face_cut.resize(128,128) # 将裁出的人脸图片 缩放到128 * 128像素
a=face_cut_128.pix_to_ai() # 将裁出图片转换为kpu接受的格式
#a = img.draw_image(face_cut_128, (0,0))
# Landmark for face 5 points
fmap = kpu.forward(task_ld, face_cut_128) # 运行人脸5点关键点检测模型
plist=fmap[:] # 获取关键点预测结果
le=(i.x()+int(plist[0]*i.w() - 10), i.y()+int(plist[1]*i.h())) # 计算左眼位置, 这里在w方向-10 用来补偿模型转换带来的精度损失
re=(i.x()+int(plist[2]*i.w()), i.y()+int(plist[3]*i.h())) # 计算右眼位置
nose=(i.x()+int(plist[4]*i.w()), i.y()+int(plist[5]*i.h())) #计算鼻子位置
lm=(i.x()+int(plist[6]*i.w()), i.y()+int(plist[7]*i.h())) #计算左嘴角位置
rm=(i.x()+int(plist[8]*i.w()), i.y()+int(plist[9]*i.h())) #右嘴角位置
a = img.draw_circle(le[0], le[1], 4)
a = img.draw_circle(re[0], re[1], 4)
a = img.draw_circle(nose[0], nose[1], 4)
a = img.draw_circle(lm[0], lm[1], 4)
a = img.draw_circle(rm[0], rm[1], 4) # 在相应位置处画小圆圈
# align face to standard position
src_point = [le, re, nose, lm, rm] # 图片中 5 坐标的位置
T=image.get_affine_transform(src_point, dst_point) # 根据获得的5点坐标与标准正脸坐标获取仿射变换矩阵
a=image.warp_affine_ai(img, img_face, T) #对原始图片人脸图片进行仿射变换,变换为正脸图像
a=img_face.ai_to_pix() # 将正脸图像转为kpu格式
#a = img.draw_image(img_face, (128,0))
del(face_cut_128) # 释放裁剪人脸部分图片
# calculate face feature vector
fmap = kpu.forward(task_fe, img_face) # 计算正脸图片的196维特征值
feature=kpu.face_encode(fmap[:]) #获取计算结果
reg_flag = False
scores = [] # 存储特征比对分数
for j in range(len(record_ftrs)): #迭代已存特征值
score = kpu.face_compare(record_ftrs[j], feature) #计算当前人脸特征值与已存特征值的分数
scores.append(score) #添加分数总表
max_score = 0
index = 0
for k in range(len(scores)): #迭代所有比对分数,找到最大分数和索引值
if max_score < scores[k]:
max_score = scores[k]
index = k
temperature = (datah+datal/100)
if max_score > 80: # 如果最大分数大于80, 可以被认定为同一个人
a = img.draw_string(i.x(),i.y(), ("%s :%2.1f" % (names[index], max_score)), color=(0,255,0),scale=2) # 显示人名 与 分数
key.value(1)
img.draw_string(128, 0, "Temperature: {:.1f}C".format(temperature))
else:
a = img.draw_string(i.x(),i.y(), ("unknown :%2.1f" % (max_score)), color=(255,0,0),scale=2) #显示未知 与 分数
img.draw_string(50, 0,( "Temperature: {:.1f}C".format(temperature)), color=(0,0,200),scale=2)
# 如果按键被触发,则将当前人脸的特征向量存储到已知人脸列表中
if start_processing:
record_ftr = feature
save_feature(record_ftr) #存到SD卡
record_ftrs.append(record_ftr)
start_processing = False
# if check == 1:
# check = 0
# record_ftr = feature
# record_ftrs.append(record_ftr) #将特征点添加到比较数组中
# if save == 1:
# save = 0
# save_feature(record_ftr) #存到SD卡
break
a = lcd.display(img) #刷屏显示
#kpu.memtest()
#a = kpu.deinit(task_fe)
#a = kpu.deinit(task_ld)
#a = kpu.deinit(task_fd)