M斐波那契数列

尽量简单易懂

题目

        M斐波那契数列F[n]是一种整数数列,它的定义如下: 
F[0] = a 
F[1] = b 
F[n] = F[n-1] * F[n-2] ( n > 1 ) 
现在给出a, b, n,你能求出F[n]的值吗?

输入

        输入包含多组测试数据; 
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )

输出

        对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。

样例输入

0 1 0
6 10 2

样例输出

0
60

  题目链接:M斐波那契数列

思路

  • 1. 首先易知(使M(-1)=1,下式即可完全满足题意)

f(n)=a^ ^{M(n-1)}*b ^ ^{M(n)} % mod =(a ^ ^{M(n-1)} % mod)*(b ^^{M(n)} % mod) %mod  其中M(n)为 斐波那契数列                                                                                                                       n                 0  1  2  3  4  5  6   7                                                                                                          M(n)       0  1  1  2  3  5  8  13

  • 2. 求斐波那契数列

       欧拉降幂公式如下

 因为mod=1e9+7为素数,a<1e9,满足欧拉降幂公式

则 a ^ ^{M(n-1)} % mod = a ^ ^{M(n-1)}^{%phi(mod)}%mod

求n <10 ^ 9的斐波那契数列只能用矩阵快速幂(大又快,就是模板麻烦),而且要 %phi(mod)  

 代码

#include <iostream>
#include <algorithm>
#include <memory.h>
#include <cstdio>
using namespace std;
#define ll long long
int Euler(int n)          //求欧拉函数
{
    int res=n;
    for(ll i=2;i*i<=n;++i){
        if(n%i==0){
            res=res/i*(i-1);
            while(n%i==0)
                n/=i;
        }
    }
    if(n>1)
        res-=res/n;
    return res;
}
const ll mod=1e9+7;
const ll MOD=Euler(mod);       //求mod的欧拉函数值
ll a,b,k;

const int N=4;           //以下为矩阵快速幂,供Prons函数使用
ll tmp[N][N];
void mul(ll a[][N],ll b[][N],ll n)
{
    memset(tmp,0,sizeof(tmp));
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            for(int k=0;k<n;k++)
                tmp[i][j]=(tmp[i][j]+a[i][k]*b[k][j])%MOD;     //这里余数是MOD
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            a[i][j]=tmp[i][j];
}
ll res[N][N];
void Pow(ll a[][N],ll k)
{
    memset(res,0,sizeof(res));
    for(int i=0;i<N;i++)
        res[i][i]=1;
    while(k){
        if(k&1)
            mul(res,a,N);
        mul(a,a,N);
        k>>=1;
    }
}
ll Fib(ll n)         //求斐波那契数列
{
    if(n==-1) return 1;        // k==0时
    ll vis[N][N]={{1,1},{1,0}};
    Pow(vis,n);
    return res[0][1];
}

ll qpow(ll a,ll b)            //快速幂,最后使用
{
    ll ans=1;
    while(b)
    {
        if(b&1)
            ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

int main()
{
    while(~scanf("%lld%lld%lld",&a,&b,&k))
    {
        ll ans1=qpow(a,Fib(k-1));
        ll ans2=qpow(b,Fib(k));
        cout<<ans1*ans2%mod<<endl;
    }
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

int 我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值