一、逻辑结构:集合结构、线性结构、树形结构、图(网)状结构
(1)线性结构:数据元素之间是一对一的关系。除了第一个元素,所有元素都有唯一前驱;除了最后一个元素,所有元素都有唯一后继。
(2)树形结构:数据元素是一对多的关系。
(3)图(网)状结构:数据元素时多对多的关系。
二、物理结构(存储结构):顺序存储、链式存储、索引存储、散列存储
(1)顺序存储:把逻辑上相邻的元素存储在物理位置上也相邻的存储单元中,元素之间的关系由存储单元的领接关系来体现。
(2)链式存储:逻辑上相邻的元素在物理位置上可以不相邻,借助指示元素存储地址的指针来表示元素之间的逻辑关系。
(3)索引存储:在存储元素信息的同时,还建立附加的索引表。索引表中的每项称为索引项,索引项的一般形式是(关键字,地址)。
(4)散列存储:根据元素的关键字直接计算出该元素的存储地址,又称哈希(Hash)存储。
>>若采用顺序存储,则各个数据元素在物理上必须是连续的;
若采用非顺序存储,则各个数据元素在物理上可以是离散的;
>>数据的存储结构会影响存储空间分配的方便程度;
数据的存储结构会影响对数据运算的速度;
>>运算的定义是针对逻辑结构的,指出运算的功能;
运算的实现是针对存储结构的,指出运算的具体操作步骤;
二、数据类型、抽象数据类型
(1)数据类型是一个值的集合和定义在此集合上的一组操作的总称。
>原子类型。其值不可再分的数据类型。
>结构类型。其值可以再分解成若干成分的数据类型。
(2)抽象数据类型(Abstract Data Type ,ADT):是抽象数据组织及与之相关的操作。
定义一个ADT就是在“定义”一种数据结构;确定了ADT的存储结构,才能“实现”这种数据结构。
三、算法
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。
1、算法的特性
(1)有穷性。一个算法必须总在执行有穷步之后结束,且每一步都可在有穷时间内完成。算法必须是有穷的,而程序可以是无穷的。(用有限步骤解决某个特定的问题)。
(2)确定性。算法中每条指令必须有确切的含义,对于相同输入只能得出相同的输出。
(3)可行性。算法中描述的操作都可以通过已经实现的基本运算执行有限次来实现。
输入。一个算法有零个或多个输入,这些输入取自于某个特定的对象的集合。
输出。一个算法有一个或多个输出,这些输出是与输入有着某种特定关系的量。
2、“好”算法的特质
(1)正确性。算法应能够正确地解决求解问题。
(2)可读性。算法应具有良好的可读性,以帮助人们理解。
(3)健壮性。输入非法数据时,算法能适当地做出反应或进行处理,而不会产生莫名其妙的输出。
(4)高效率与低存储量需求。(高效率指花的时间少,时间复杂度低;低存储量需求指不费内存,空间复杂度低)
四、时间复杂度和空间复杂度
(1)时间复杂度
事前预估算法时间开销T(n)与问题规模n的关系(T表示“time”)
>>大O表示“同阶”,同等数量级。即:当n->∞时,二者之比为常数;可以只考虑高阶的部分;
例:T1(n)=3n+3=O(n);T2(n)=n^2+3n+1000=O(n^2);T3(n)=n^3+n^2+9999999=O(n^3);
①顺序执行的代码只会影响常数项,可以忽略;
②只需挑循环中的一个基本操作分析它的执行次数与n的关系即可;
③如果有多层嵌套循环,只需关注最深层循环循环了几次。
例:
void f(int n){
int i=1;
while(i<=n){
i=i*2;
printf("Hello World! %d\n",i);
}
printf("Good!!! %d\n",n);
}
例:
int a[n]={1..n};
f(a,n);
void f(int a[],int n){
printf("AAAAAAAA\n");
for(int i=0;i<n;i++){
if(a[i]==n){
printf("BBBBBB %d\n",n);
break;
}
}
}
时间复杂度:
(1)最好情况:元素n在第一个位置。--最好时间复杂度T(n)=O(1);
(2)最坏情况:元素n在最后一个位置。--最坏时间复杂度T(n)=O(n);
(3)平均情况:假设元素n在任意一个位置的概率相同,为1/n。--平均时间复杂度T(n)=O({[(1+n)n]/2}*(1/n))=O(n);
(2)空间复杂度