一天蒜头君猜想,是不是所有的偶数(除了 22),都可以用两个质数相加得到呢?于是聪明的蒜头君就找你来验证了。
输入格式
第一行输入一个整数 tt 表示测试组数。
接下来 tt 行,每行一个整数 nn。
输出格式
输出两个整数,因为答案可能有多个,所有要求输出的这两个整数是所有答案中字典序最小的。
数据范围
对于 30\%30% 的数据 1 \le t \le 10^31≤t≤103。
对于 60\%60% 的数据 1 \le t \le 10^51≤t≤105。
对于 100\%100% 的数据 1 \le t \le 10^6, 4 \le n \le 10^61≤t≤106,4≤n≤106,nn 为偶数。
Sample 1
Inputcopy | Outputcopy |
---|---|
3 4 8 20 | 2 2 3 5 3 17 |
注意:当数据范围1e7+ 的时候,线性筛法运行更快 ;输入输出请用scanf 不然会时间超限
AC1 埃式筛法
#include<stdio.h>
#include<string.h>
int visit[1000050];
void prime()
{
memset(visit,0,sizeof(visit));//初始化都是素数
visit[0]=visit[1]=1;//0 1不是
for(int i=2;i<=1000;i++)
{
if(visit[i]==0)//如果i是素数 让i的倍数标记不是素数
{
for(int j=i*2;j<=1000000;j+=i)
{
visit[j]=1;
}
}
}
}
int main(void)
{
prime();
int t,p,x;
scanf("%d",&t);
for(int i=1;i<=t;i++)
{
scanf("%d",&x);
for(int j=2;j<=x/2;j++)
{
if(visit[j]==0&&visit[x-j]==0)
{
printf("%d %d\n",j,x-j);
break;
}
}
}
return 0;
}
AC2 欧拉筛法/线性筛法
#include<stdio.h>
#include<iostream>
using namespace std;
const int N=1e6+10;
int cnt=0,p[N];
bool st[N];
void prime()
{
for(int i=2;i<=N;i++)
{
if(!st[i])
{
p[cnt++]=i;//存最小质因数
}
for(int j=0;p[j]<=N/i;j++)//控制筛选范围
{
st[p[j]*i]=true;
if(i%p[j]==0)//保证这个i是被它的最小质因子筛掉的
break;
}
}
}
int main(void)
{
int t,n;
scanf("%d",&t);
prime();
for(int i=1;i<=t;i++)
{
scanf("%d",&n);
for(int j=2;j<=n/2;j++)
{
if(!st[j]&&!st[n-j])
{
printf("%d %d\n",j,n-j);
break;
}
}
}
return 0;
}