动态规划-子序列问题

300.最长递增子序列

1.dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

// 注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

3. dp[i](即最长递增子序列)起始大小至少都是1.

4. 从前向后遍历

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        Arrays.fill(dp,1);
        int res = 1;
        for(int i=1; i<n; i++){
            for(int j=0; j<i; j++){
                if(nums[i]>nums[j]){
                    dp[i] = Math.max(dp[i],dp[j]+1);
                }
            }
            res = Math.max(res,dp[i]);
        }
        // 注意最长的子序列不一定是在dp[n-1]处
        // 所以需要一个res去接收最大的dp值
        return res;
    }
}

674. 最长连续递增序列

在上一题的基础上要求连续

因此就只需要与前一个比较即可

本题也可用贪心解决

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        Arrays.fill(dp,1);
        int res = 1;
        for(int i=1; i<n; i++){
            if(nums[i]>nums[i-1]){
                dp[i]=dp[i-1]+1;
            }
            res = Math.max(res,dp[i]);
        }
        return res;
    }
}

// 贪心
class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int count=1;
        int res = 1;
        for(int i=1; i<nums.length; i++){
            if(nums[i]>nums[i-1]){
                count++;
            }else{
                count=1;
            }
            res = Math.max(res,count);
        }
        return res;
    }
}

718. 最长重复子数组

1.dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度。

2.当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

3.dp[i][0] 和dp[0][j]其实都没有意义,但可以初始化为0。

4.外层for循环遍历A,内层for循环遍历B。

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int m = nums1.length+1;
        int n= nums2.length+1;
        int res=0;
        int[][] dp = new int[m][n];
        for(int i=1; i<m; i++){
            for(int j=1; j<n; j++){
                if(nums1[i-1]==nums2[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                    res = Math.max(res,dp[i][j]);
                }
                
            }
        }
        return res;
    }
}

 1143. 最长公共子序列

1.dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

2.递推情况如下

  • text1[i - 1] 与 text2[j - 1]相同:dp[i][j] = dp[i - 1][j - 1] + 1;
  • text1[i - 1] 与 text2[j - 1]不相同:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大

3.dp[i][0] = 0=dp[0][j]。

4.从前向后,从上到下来遍历

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length()+1;
        int n = text2.length()+1;
        int[][] dp = new int[m][n];
        for(int i=1; i<m; i++){
            for(int j=1; j<n; j++){
                if(text1.charAt(i-1) == text2.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1]+1;
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[m-1][n-1];
    }
}

1035. 不相交的线

直线不能相交,就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序。只要相对顺序不改变,连接相同数字的直线就不会相交。

因此,本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

与上一题一模一样

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int m = nums1.length+1;
        int n = nums2.length+1;
        int[][] dp = new int[m][n];
        for(int i=1; i<m; i++){
            for(int j=1; j<n; j++){
                if(nums1[i-1]==nums2[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[m-1][n-1];
    }
}

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值