题目来源:王晓东《算法设计与分析》
假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。设计一个有效的
贪心算法进行安排。(这个问题实际上是著名的图着色问题。若将每一个活动作为图的一个
顶点,不相容活动间用边相连。使相邻顶点着有不同颜色的最小着色数,相应于要找的最小
会场数。)
输入格式:
第一行有 1 个正整数k,表示有 k个待安排的活动。
接下来的 k行中,每行有 2个正整数,分别表示 k个待安排的活动开始时间和结束时间。时间
以 0 点开始的分钟计。
输出格式:
输出最少会场数。
输入样例:
5
1 23
12 28
25 35
27 80
36 50
输出样例:
在这里给出相应的输出。例如:
3
//该题意是所有活动都要上,但是要求在尽可能少的空间里安排活动
#include <iostream>
#include <algorithm>
using namespace std;
struct Meet{
int beg;
int end;
int visited; //所有活动处于初始状态
} meet[100];
bool cmp(Meet x, Meet y){
//**非常重要,观察题目,注意题目的排列顺序,是按开始时间还是初始时间
if(x.beg==y.beg) return x.end<y.end;
return x.beg<y.beg;
}
int main(){
int n,num;
cin>>n;
for(int i=0;i<n;i++){
meet[i].visited=0;
cin>>meet[i].beg>>meet[i].end;
}
sort(meet,meet+n,cmp);
num=0;
for(int i=0;i<n;i++){
if(meet[i].visited==0){
num++; //占用第num个场地
int last=meet[i].end; //第i个活动的结束时间
for(int j=i+1;j<n;j++){
if(meet[j].beg>=last&&meet[j].visited==0){
//判断该活动的开始时间是否大于前面活动的时间,该活动是否已经表演了
last=meet[j].end; //以该活动的结束时间为判断下一个活动的标准
meet[j].visited=1; //该活动已经完成表演
}
}
}
}
cout<<num<<endl;
}