题目:给定两个一维int数组A和B. 其中:A是长度为m、元素从小到大排好序的有序数组。B是长度为n、元素从小到大排好序的有序数组。希望从A和B数组中,找出最大的k个数字,要求:使用尽量少的比较次数。
解法:
1.首先介绍上中位数的概念(算法原型)
在编写判断上中位数的函数时,首先要保证两个数组的长度相同。
1.1 当两个数组长度均为偶数时
eg:arr1 = {a,b,c,d}; arr2 = {e,f,g,h},求第4大的数
- 当 b==f 时,有 b,f均为上中位数
- 当 b < f 时, abe 均小于 f,所以前三个最小的数中包含 ab;而 gh 大于 f,即 gh 大于abef,所以 gh 肯定不为第四大的数,所以第四大的数只能在 cd 和 ef 中产生,所以递归查找 cdef 中上中位数。
- 当 b > f 时, 同理可得第四大的数只能在 ab 和 gh 中产生,所以递归查找 abgh 上中位数。
1.2 当两个数组长度均为奇数时
eg:arr1 = {a,b,c,d,e}; arr2 = {f,g,h,i,j},求第5大的数
- 当 c==h 时,有c,h均为上中位数
- 当 c < h 时,abc均小于h,fg 小于 h,所以 hij 肯定为第五位之后的数,那么只需考虑 abc 和 fg 是否符合要求。但是此时无法进行递归求解,因为两个数组长度不相等,所以要手动判断 c和g 的关系
- c==g:c,g均为上中位数
- c < g:abc 为前四小的其中三个数,所以第五大的数只能在 de 和 fg 中产生,所以递归查找 defg 中上中位数。
- c > g:abfg 均小于 c,c为上中位数
- 当 c > h 时:解法同2
2.题解
该题对于求解的第 k 大的数中的 k 参数有不同的求解方式,假设数组A长度为10,数组B长度为15
eg:注意:数组中的数字只代表位置,不表示值
arr1 = {1,2,3,4,5,6,7,8,9,10} arr1.length = len1
arr2 = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} arr2.length = len2
2.1 当1<=k<=10时(1<=k<=len1),假设k=6
因为 k=6 ,<len1 && <len2,所以第六小的数只可能出现在两个数组的前六个数中。
所以我们只需调用求上中位数的函数,传入两个数组的前六位数即可
2.2 当10<k<15时(len1<k<len2),假设k=12
因为 k=12,所以 arr1 中全部数都有可能,数组 arr2 中,1(最大为第11个数),13-15(最小为13-15个数)不可能,所以满足条件的为 2-12 共11个数,而第一个数组为10个数,两个数组长度不同,不能调用函数,所以需要手动判断一个数,即 arr2 中的 2
- arr2[2] >=arr1[10]:arr[2]为第12个数
- arr2[2] < arr1[10]:arr[2]最大为第11个数,不满足要求,淘汰,求解arr1[1-10],arr2[3-12]
求解出上中位数后(第十个)加上淘汰的两个,正好为第十二个数
2.3 当 15<=k<=25时(len2<=k),假设k=20
因为 k=20,所以arr2[10]之前的数都不满足要求(当arr1中全部元素全部压在arr2[10]之前,则arr2[10]能达到第20个数,之前的不满足要求),同理求出 arr1 中满足条件的,即
arr1[5]-arr1[10],arr2[10]-arr2[15],但只求出这两个数组的上中位数时会发现,之前淘汰掉了4+9=13个数,加上上中位数 6 =19,不是20,所以在求上中位数之前要先判断两个数组最左元素是否满足要求
- arr1[5] >arr2[15]:返回arr1[5]
- arr2[10]>arr1[10]:返回arr2[10]
- 如果都不满足,则求解arr1[6]-arr1[10],arr2[11]-arr2[15]
这时,arr1 淘汰了5个数,arr2 淘汰了10个数,加上上中位数 5 正好为第20个数
3 Coding
public static int findKthNum(int[] arr1, int[] arr2, int kth) {
if (arr1 == null || arr2 == null) {
throw new RuntimeException("Your arr is invalid!");
}
if (kth < 1 || kth > arr1.length + arr2.length) {
throw new RuntimeException("K is invalid!");
}
//将长数组拷贝
int[] longs = arr1.length >= arr2.length ? arr1 : arr2;
//将短数组拷贝
int[] shorts = arr1.length < arr2.length ? arr1 : arr2;
int l = longs.length;
int s = shorts.length;
//k小于短数组长度
if (kth <= s) {
return getUpMedian(shorts, 0, kth - 1, longs, 0, kth - 1);
}
//k大于长数组长度
if (kth > l) {
//判断短数组满足条件的最左元素是否为所求
if (shorts[kth - l - 1] >= longs[l - 1]) {
return shorts[kth - l - 1];
}
//判断长数组满足条件的最左元素是否为所求
if (longs[kth - s - 1] >= shorts[s - 1]) {
return longs[kth - s - 1];
}
//求上中位数
return getUpMedian(shorts, kth - l, s - 1, longs, kth - s, l - 1);
}
if (longs[kth - s - 1] >= shorts[s - 1]) {
return longs[kth - s - 1];
}
return getUpMedian(shorts, 0, s - 1, longs, kth - s, kth - 1);
}
//求上中位数,要保证两个数组等长
public static int getUpMedian(int[] a1, int s1, int e1, int[] a2, int s2,
int e2) {
int mid1 = 0;
int mid2 = 0;
int offset = 0;
while (s1 < e1) {
mid1 = (s1 + e1) / 2;
mid2 = (s2 + e2) / 2;
offset = ((e1 - s1 + 1) & 1) ^ 1;
if (a1[mid1] > a2[mid2]) {
e1 = mid1;
s2 = mid2 + offset;
} else if (a1[mid1] < a2[mid2]) {
s1 = mid1 + offset;
e2 = mid2;
} else {
return a1[mid1];
}
}
return Math.min(a1[s1], a2[s2]);
}