差值与拟合学习1
目录
概念
特点
思路
操作
例题
01 概念
建模题干中,常常要给出由实验或测量所得到的一些离散数据。本方法就是要通过这些数据去确定某一类已知函数的参数或寻求某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度。
02特点:
本方法是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法。但插值问题不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。数据拟合要求得到一个具体的近似函数的表达式。
03思路:
04操作
05 例题:
代码如下行:
x =[129.0 140.0 103.5 88.0 185.5 195.0 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5 ];
y =[ 7.5 141.5 23.0 147.0 22.5 137.5 85.5 -6.5 -81 3.0 56.5 -66.5 84.0 -33.5 ];
z =[ 4 8 6 8 6 8 8 9 9 8 8 9 4 9 ];
x1=75:1:200;
y1=-50:1:150;
[x1,y1]=meshgrid(x1,y1);
z1=griddata(x,y,z,x1,y1,'v4');
meshc(x1,y1,z1)
实现如图