Stable Diffusion【ControlNet】:使用InstantID插件实现人物角色一致性

在艺术创作中,保持人物角色的一致性至关重要。然而,如何从不同视角创造一致的人物角色往往是一项挑战。如今,借助StableDiffusion的ControlNet功能和InstantID插件,你可以轻松实现这一目标。本文将带你深入了解如何使用InstantID插件,实现人物角色的一致性。

在这里插入图片描述

StableDiffusion是一款基于深度学习的图像生成模型,它能够在没有任何人类指导的情况下生成高质量、逼真的图像。与传统的图像生成技术相比,StableDiffusion具有更高的生成质量和更快的生成速度。

一.InstantID介绍

InstantID 使用 InsightFace 从参考人脸中检测、裁剪和提取人脸embedding 。然后embedding与 IP-Adapter一起使用来控制图像生成。这部分与 IP-Adapter Face ID 非常相似。不过,它还使用 ControlNet检测并修复多个面部标志(眼睛、鼻子和嘴巴)。

结合使用IP-Adapter Face ID 和 ControlNet,可以高保真度地复制我们提供的参考图像,从而最终实现人物角色的一致性。

注意:InstantID需要使用SDXL大模型,目前还没有Stable Diffusion 1.5对应的版本。

二.InstantID插件的安装

首先将controlnet升级到最新的版本,最好是在V1.1.440版本及以上。

下载InstantID的IP-adapter模型。

(相关模型插件及安装包文末可自行扫描获取)

将下载的文件重命名为ip-adapter_instant_id_sdxl.bin。

将上面下载下来的2个文件都放在stable-diffusion-webui > models >ControlNet文件夹目录下。具体情况大家可以按照自己的目录来。

然后重启我们的SD工具,可以看到在控制选项中多了一个Instant_ID选项,表示InstantID安装好了。

三.InstantID插件在SD 1.5中的使用

使用InstantID模型时需要注意一些事项:

  • 大模型只能使用SDXL大模型

  • 提示词引导系数 (CFG Scale)要比通常设置的参数值低(3-5)

  • 需要使用2个ControlNet作为InstantID

  • 减少两个ControlNet的控制权重(Control Weights)和引导终止时机(Ending Control Steps)

下面我们来具体体验一下InstantID插件的使用。

【第一步】:大模型的选择

这里我们使用Dreamshaper SDXL Turbo大模型。VAE大模型选择None。

【第二步】:提示词的编写

正向提示词:

Prompt:watercolors portrait of a woman (happy
laughing:1.15),masterpiece,artistry,

提示词:一个女人的水彩肖像(快乐地笑:1.15),杰作,艺术

反向提示词:

Prompt:low quality, blurry, malformed, distorted

提示词:低质量、模糊、畸形、扭曲

文生图相关参数设置

  • 采样器:DPM++SDE Karras

  • 采样迭代步数:7

  • 图片宽高:1016*1016 (默认图像尺寸 1024×1024 不适用于 Instant ID。使用接近但不完全是 1024×1024 的分辨率)。

  • 提示词引导系数(CFG):2(CFG 比例必须设置得相当低,InstantID 才有效)

【第三步】:ControlNet插件InstantID模型设置

需要使用两种 InstantID 模型。换句话说,需要使用两个ControlNet。

ControlNet单元0设置

第一个ControlNet主要使用InsightFace来提取人物的面部特征。

这里我们使用紫霞仙子的图片作为参考图像。

  • 启用:选中

  • 完美像素模式:选中

  • 控件类型:Instant_ID

  • 预处理器:instant_id_face_embedding

  • 模型:ip-adapter_instant_id_sdxl

  • 控制权重:1

  • 引导介入时机:0

  • 引导终止时机:1

ControlNet单元1设置

第二个ControlNet用于提取面部关键点,例如眼睛、鼻子和嘴巴的位置。您可以使用不同的图像,但建议使用相同的图像。这里我们仍然使用第一个ControlNet上传的图片。

  • 启用:选中

  • 完美像素模式:选中

  • 控件类型:Instant_ID

  • 预处理器:instant_id_face_keypoints

  • 模型:control_instant_id_sdxl

  • 控制权重:0.45

  • 引导介入时机:0

  • 引导终止时机:1

【第四步】:生成图片

点击【生成】按钮,最终生成的图片效果如下。

四. 图片 风格样式****

图片的风格样式是由提示词来控制。您可以使用SDXL的提示词优化图片的展示内容和背景元素。

1. 人物肖像

Prompt :high quality,masterpiece,rich details,realistic
photography,8k,high-definition image quality,

portrait of a woman,(happy laughing:1.15),

提示词 :高品质,杰作,细节丰富,摄影逼真,8k,高清画质,

一个女人的肖像,(快乐地的笑:1.15),

2. 赛博朋克风格

Prompt :high quality,masterpiece,rich details,realistic
photography,8k,high-definition image quality,

Cyberpunk style,portrait of a woman,(happy laughing:1.15),

提示词 :高品质,杰作,细节丰富,摄影逼真,8k,高清画质,

赛博朋克风格,一个女人的肖像,(快乐的笑:1.15),

3. 线条艺术风格

Prompt :high quality,masterpiece,rich details,realistic
photography,8k,high-definition image quality,

line art style,portrait of a woman,(happy laughing:1.15),

提示词 :高品质,杰作,细节丰富,摄影逼真,8k,高清画质,

线条艺术风格,一个女人的肖像,(快乐的笑:1.15),

这里的测试示例中,我改变了原图片中的人物表情(微笑),总体来看,Instant_ID插件在实现人物换脸保持人物角色一致性上还是不错的。

这里的测试示例中,我改变了原图片中的人物表情(微笑),总体来看,Instant_ID插件在实现人物换脸保持人物角色一致性上还是不错的。

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值