零基础学会Stable Diffusion!保姆级教程!

最近,我惊奇地发现,还有不少粉丝朋友还没用过AI绘画的顶流工具——StableDiffusion,简称“SD”。

今天来出一期零基础的AI绘画课(SD版),分为4个部分:

  • SD能有多强?

  • 电脑配置要求

  • 软件安装

  • 基础使用流程

1.SD能有多强?

其实,2022年8月Stable Diffusion就开源发布了,经过1年多的发展迭代,出现了非常多有趣实用的玩法。

定制二次元头像

商业模特

艺术字

还有之前很火的视频:瞬息全宇宙、央视宣传片《AI我中华》等等。

2.电脑配置要求

Stable Diffusion如此强大,而且完全本地运行,对电脑配置要求不低。

想要流畅使用SD,建议Windows 10/11系统64位,NVIDIA显卡(N卡),运行内存16GB以上,显存8GB以上。

查看方法:桌面最下方右键 -> 任务管理器 -> 性能

这电脑配置确实劝退了不少人,不满足怎么办?文末有免费在线版地址。

3.软件安装

原版的SD安装比较麻烦,python、git等等环境需要准备,不适合新手小白。

这里推荐使用赛博佛祖——秋叶大佬的一键安装包,只需要两步。

下方扫码获取SD一键安装包
在这里插入图片描述

  1. 打开【启动器】文件夹,双击运行里面的【windowsdesktop-runtime-6.0.25-win-x64.exe】文件,安装环境

  2. 打开【秋叶整合包】文件夹,解压【sd-webui-aki-x.7z】,注意:路径中不能包含中文和空格 ,怕出错就解压到根目录吧。

进入目录,双击【A绘世启动器】

第一次启动有些慢,等待文件加载和更新。

启动器界面有很多配置,包括:模型管理、版本管理、参数设置等,感兴趣的可以多看看。

点【一键启动】,留意控制台的信息,稍等片刻,Stable Diffusion就能正常启动啦,并且浏览器自动打开一个页面,这就是SD WebUI。

如果浏览器没有自动打开,也可以手动输入网址:http://127.0.0.1:7860/?__theme=dark

4.基础使用流程

默认的安装包中没有大模型和LoRA,需要手动下载文件,并放到对应的目录下。

大模型:** _SD根目录\models\Stable-diffusion_**

LoRA:** _SD根目录\models\Lora_**

首次下载,需要刷新一下才会出现在列表里

比如,最近很火的瓷娃娃滤镜,切换图生图,设置正反提示词,上传参考图,点生成,一张美丽动人的照片就搞定啦!


AI工具SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

<think>好的,我现在需要帮助用户了解Stable Diffusion的工作原理和操作方法,特别是他们提到的图解教程零基础入门。首先,我需要整理Stable Diffusion的三个主要组成部分:变分自编码器(VAE)、U-Net和文本编码器。用户可能对每个部分的作用不太清楚,所以我要逐一解释。 接下来,用户可能需要知道扩散过程的具体步骤,包括前向扩散和反向去噪。这里需要区分像素空间和潜在空间,解释为什么潜在空间更高效。同时,结合引用中的信息,比如潜在扩散模型(LDM)的优势是降低计算需求,这点很重要,需要强调。 然后,操作方法部分,用户可能想知道如何使用现有的工具或代码来运行Stable Diffusion。需要提到文本编码器如何处理输入提示,以及负面关键词的应用,引用中的通用负面关键词可以作为例子,但也要提醒用户可以自行添加。 关于图解教程,虽然不能直接提供图片,但可以描述结构图的大致内容,比如VAE的编码和解码过程,U-Net的残差连接结构。可能还需要解释扩散模型的插值任务,如引用2提到的,但用户的问题主要集中在原理和操作,这部分可能次要。 需要确保回答符合系统指令:使用正确的中文,数学公式用$...$,独立公式用$$...$$,并且生成相关问题。同时,引用要自然添加在段落末尾。检查是否有遗漏的部分,比如VAE如何压缩图像,U-Net如何逐步去噪,文本编码器的作用等。最后,确保生成的相关问题与用户的问题相关,比如优化方法、应用场景、安装步骤等。</think>### Stable Diffusion 工作原理详解 Stable Diffusion 是**潜在扩散模型(Latent Diffusion Model, LDM)**的典型应用,其核心流程可分为以下三个阶段: --- #### 一、核心组件与作用 1. **变分自编码器(VAE)** - 作用:将高维像素空间(如$512 \times 512$图像)压缩到低维潜在空间(如$64 \times 64$),降低计算复杂度[^3]。 - 数学表达: $$ z = \text{VAE}_\text{encoder}(x),\quad x' = \text{VAE}_\text{decoder}(z) $$ - 优势:潜在空间维度远低于像素空间,训练效率提升约**45%**。 2. **U-Net** - 结构特点:包含残差连接(ResNet)与注意力机制,逐步去除潜在空间中的噪声。 - 扩散过程:通过反向扩散从$z_T$(纯噪声)逐步生成$z_0$(清晰潜在表示)。 3. **文本编码器(CLIP)** - 将文本提示(如"星空下的城堡")转换为条件向量,通过交叉注意力机制指导图像生成。 --- #### 二、扩散过程图解(文字描述) 1. **前向扩散(加噪)** - 对潜在表示$z_0$逐步添加高斯噪声,经过$T$步后得到$z_T \sim \mathcal{N}(0, I)$。 - 每步噪声强度由调度算法(如DDPM、DDIM)控制。 2. **反向去噪(生成)** - U-Net预测当前步的噪声$\epsilon_\theta(z_t, t, \text{text})$,通过迭代更新: $$ z_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( z_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta \right) + \sigma_t \epsilon $$ - 最终将$z_0$通过VAE解码器还原为像素空间图像。 --- #### 三、操作步骤(零基础入门) 1. **输入配置** - 正向提示:描述目标内容(如"A cat wearing sunglasses, cyberpunk style") - 负面提示:排除不需要的元素(如引用[4]提供的"low quality, blurry") 2. **参数调节** - 采样步数:20-50步(步数↑→质量↑,速度↓) - 引导强度(CFG Scale):7-12(值↑→文本对齐↑,多样性↓) - 随机种子:固定种子可复现结果 3. **生成流程** ```python # 伪代码示例 prompt = "星空下的城堡,4K高清" negative_prompt = "低质量,模糊" latent = torch.randn((1,4,64,64)) # 初始化噪声 for t in timesteps: noise_pred = unet(latent, t, text_embeddings) latent = scheduler.step(noise_pred, t, latent) image = vae.decode(latent) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值