矩阵的基本演算


转置

( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT


( A T ) − 1 = ( A − 1 ) T (A^T)^{-1} = (A^{-1})^T (AT)1=(A1)T
( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1


t r ( A T ) = t r ( A ) tr(A^T) = tr(A) tr(AT)=tr(A)
t r ( A + B ) = t r ( A ) + t r ( B ) tr(A+B) = tr(A)+tr(B) tr(A+B)=tr(A)+tr(B)
t r ( A B ) = t r ( B A ) tr(AB) = tr(BA) tr(AB)=tr(BA)
t r ( A B C ) = t r ( B C A ) = t r ( C A B ) tr(ABC) = tr(BCA) = tr(CAB) tr(ABC)=tr(BCA)=tr(CAB)


行列式

d e t ( A ) 也 记 作 ∣ A ∣ det(A)也记作|A| det(A)A

d e t ( A ) = ∑ σ ∈ S n p a r ( σ ) A 1 σ 1 A 2 σ 2 … A n σ n det(A) = \sum_{\sigma \in S_n}{par(\sigma)A_{1\sigma_1}A_{2\sigma_2}\dots A_{n\sigma_n}} det(A)=σSnpar(σ)A1σ1A2σ2Anσn
其中 S n S_n Sn 为所有 n n n 阶排列(permutation)的集合, p a r ( σ ) par(\sigma) par(σ) 的值为
( − 1 ) t ( σ 1 σ 2 … σ n ) (-1)^{t(\sigma_1\sigma_2\dots\sigma_n)} (1)t(σ1σ2σn)
其中
t ( σ 1 σ 2 … σ n ) t(\sigma_1\sigma_2\dots\sigma_n) t(σ1σ2σn)
σ 1 σ 2 … σ n \sigma_1\sigma_2\dots\sigma_n σ1σ2σn 的逆序数。

性质
d e t ( c A ) = c n d e t ( A ) det(cA) = c^ndet(A) det(cA)=cndet(A)
d e t ( A T ) = d e t ( A ) det(A^T) = det(A) det(AT)=det(A)
d e t ( A B ) = d e t ( A ) d e t ( B ) det(AB) = det(A)det(B) det(AB)=det(A)det(B)
d e t ( A − 1 ) = d e t ( A ) − 1 det(A^{-1})=det(A)^{-1} det(A1)=det(A)1
d e t ( A n ) = d e t ( A ) n det(A^n) = det(A)^n det(An)=det(A)n

Frobenius范数
矩阵 A ∈ R   m × n A \in \mathbb{R}^{~ m \times n} AR m×n F r o b e n i u s Frobenius Frobenius 范数定义为
∥ A ∥ F = ( t r ( A T A ) ) 1 / 2 = ( ∑ i = 1 m ∑ j = 1 m A i j 2 ) 1 / 2 \| A \|_F = (tr(A^TA))^{1/2} = (\sum_{i=1}^{m}{\sum_{j=1}^{m}{A_{ij}^2}})^{1/2} AF=(tr(ATA))1/2=(i=1mj=1mAij2)1/2
容易看出,矩阵的 F r o b e n i u s Frobenius Frobenius 范数就是将矩阵张成向量后的 L 2 L_2 L2 范数。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 《矩阵论教程 张绍飞 pdf》是一本关于矩阵论的教程,由张绍飞编写。矩阵论是线性代数的一个重要分支,与许多科学领域有着密切的联系。这本教程的目的是向读者介绍矩阵论的基本概念、性质和应用。 教程的内容主要分为六个部分。第一部分介绍了矩阵基本概念,包括矩阵与线性方程组的关系、矩阵的运算规则等。第二部分讲解了矩阵的特殊类型,如对角矩阵、三角矩阵等,并探讨了它们的性质和应用。第三部分介绍了矩阵的行列式和特征值,以及它们在矩阵理论中的重要作用。 第四部分涉及矩阵的相似和合同,讲解了相似矩阵和合同矩阵的概念、性质和判定方法。第五部分介绍了线性变换与矩阵的关系,以及它们在几何变换中的应用。最后一部分讨论了矩阵的特征值分解和奇异值分解,以及它们在数据分析和信号处理中的应用。 这本教程以清晰简洁的语言和详细的例题展示了矩阵论的基础知识,并提供了大量习题和答案供读者练习。读者通过学习这本教程,可以系统地了解矩阵论的基本概念和性质,培养抽象思维和运算能力,并为应用数学和科学研究打下坚实的基础。 总之,《矩阵论教程 张绍飞 pdf》是一本很好的矩阵论学习资料,适合对矩阵论感兴趣的学生和研究者阅读。无论是在学术研究中还是在实际应用中,矩阵论都有着广泛而重要的作用,因此掌握矩阵论的知识将对读者今后的学习和工作都有很大的帮助。 ### 回答2: 《矩阵论教程》是由张绍飞编写的一本介绍矩阵论的教材,该教材以清晰的逻辑结构和丰富的数学示例循序渐进地介绍了矩阵基本概念和相关理论。 这本教材共分为若干章节,每章节都涵盖了特定的矩阵理论知识,包括矩阵的定义、运算规则、转置、乘法、逆矩阵等。同时,教材也介绍了矩阵的特征值和特征向量、矩阵的秩、矩阵的分解以及矩阵方程等高级内容。 《矩阵论教程》在语言表达上力求简洁明了,以方便读者理解和记忆。其中,教材采用了大量的数学符号和公式,同时配备了详细的解题步骤和演算过程,以帮助读者更好地掌握矩阵理论的运用方法。 此外,该教材还提供了丰富的练习题和习题答案,供读者进行巩固和提高。这些练习题既考查了基础概念的掌握,又涵盖了较为复杂的应用问题,有助于读者巩固知识并提升解题能力。 《矩阵论教程》对于数学专业学生、工程技术人员以及对矩阵理论感兴趣的读者而言,是一本不可多得的教材。它详尽而全面地介绍了矩阵理论的基本原理和应用,对于读者的学术研究和实际工作都具有重要的参考价值。无论是初学者还是有一定基础的学习者,都能从中受益匪浅。 ### 回答3: 《矩阵论教程 张绍飞 pdf》是一本介绍矩阵论的教程,由张绍飞编写。矩阵论是线性代数中的一个重要分支,研究矩阵的性质和运算规律。 该教程首先介绍了矩阵基本概念和表示方法,包括矩阵的定义、行列式和转置等。接着,教程介绍了矩阵运算的性质,如加法、乘法和逆矩阵等。这些运算规则是矩阵计算的基础,对进一步学习线性代数和应用数学都具有重要意义。 教程还介绍了矩阵的特殊类型,包括对称矩阵、正交矩阵和对角矩阵等。这些特殊类型的矩阵在各个领域中都有广泛的应用,如物理学、工程学和计算机科学等。 此外,该教程还探讨了矩阵的特征值和特征向量的概念和性质。特征值和特征向量是矩阵重要的特性,它们在矩阵分析和应用中扮演着重要角色。 教程的风格简洁明了,重点突出,适合初学者入门。每个概念和公式都有详细且清晰的解释,有助于读者理解和掌握矩阵论的基本知识。 总之,《矩阵论教程 张绍飞 pdf》是一本介绍矩阵论的优秀教程,它系统地介绍了矩阵基本概念、运算和特性。无论是对于学习线性代数的学生,还是对于从事数学和应用数学研究的人员,这本教程都是一本值得推荐的参考书。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lgxo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值