MATLAB--CUP Challenge(杯赛挑战)

例1.

Problem 1974. Length of a short side

Calculate the length of the short side, a, of a right-angled triangle with hypotenuse of length c, and other short side of length b.

(计算直角三角形的短边 a 的长度,其中斜边长度为 c,另一短边长度为 b。)

% 输入斜边长度和另一短边长度
c = input('Enter the length of the hypotenuse (c): ');
b = input('Enter the length of the other short side (b): ');

% 计算短边a的长度
a = sqrt(c^2 - b^2);

% 显示结果
fprintf('The length of the short side (a) is: %.2f\n', a);

例2

 Problem 2024. Triangle sequence

A sequence of triangles is constructed in the following way:

1) the first triangle is Pythagoras' 3-4-5 triangle

2) the second triangle is a right-angle triangle whose second longest side is the hypotenuse of the first triangle, and whose shortest side is the same length as the second longest side of the first triangle

3) the third triangle is a right-angle triangle whose second longest side is the hypotenuse of the second triangle, and whose shortest side is the same length as the second longest side of the second triangle etc.

Each triangle in the sequence is constructed so that its second longest side is the hypotenuse of the previous triangle and its shortest side is the same length as the second longest side of the previous triangle.

What is the area of a square whose side is the hypotenuse of the nth triangle in the sequence?

(这个序列的三角形是按照以下方式构造的:

1)第一个三角形是毕达哥拉斯的3-4-5三角形。

2)第二个三角形是一个直角三角形,其第二长边是第一个三角形的斜边,而最短边与第一个三角形的第二长边相同。

3)第三个三角形是一个直角三角形,其第二长边是第二个三角形的斜边,而最短边与第二个三角形的第二长边相同,依此类推。

序列中的每个三角形都是这样构造的:其第二长边是前一个三角形的斜边,而其最短边与前一个三角形的第二长边相同。 求第n个三角形的斜边作为边长的正方形的面积是多少?)

以下是用 MATLAB 编写的程序,用于计算序列中第 n 个三角形的斜边作为边长的正方形的面积:

function area = squareArea(n)
    % Initialize the first triangle (3-4-5 triangle)
    a = 3;
    b = 4;
    c = 5;

    % Iterate to find the nth triangle in the sequence
    for i = 2:n
        % Calculate the next triangle based on the previous one
        a_next = b;
        b_next = c;
        c_next = sqrt(a_next^2 + b_next^2);
        
        % Update values for the next iteration
        a = a_next;
        b = b_next;
        c = c_next;
    end

    % Calculate the area of the square whose side is the hypotenuse of the nth triangle
    area = c^2;
end

你可以调用这个函数并传入所需的 n 值来计算对应三角形的正方形面积。例如,调用 squareArea(1) 将返回第一个三角形的斜边作为边长的正方形的面积。 

 例3.

Problem 2022. Find a Pythagorean triple

Given four different positive numbers, a, b, c and d, provided in increasing order: a < b < c < d, find if any three of them comprise sides of a right-angled triangle. Return true if they do, otherwise return false

(给定四个不同的正数 a、b、c 和 d,以增加的顺序提供:a < b < c < d,请找出它们中任意三个是否构成直角三角形的三边。如果构成直角三角形,则返回 true,否则返回 false。)

以下是用 MATLAB 编写的程序,用于确定给定四个不同正数 a、b、c 和 d 是否存在三个构成直角三角形的边:

function result = isRightTriangle(a, b, c, d)
    % Check if any three numbers comprise sides of a right-angled triangle
    result = false;
    if a^2 + b^2 == c^2 || a^2 + b^2 == d^2 || a^2 + c^2 == d^2 || b^2 + c^2 == d^2
        result = true;
    end
end

 您可以调用这个函数并传入四个数值来检查它们是否存在三个构成直角三角形的边。例如,调用 isRightTriangle(3, 4, 5, 6) 将返回 true,因为 3、4 和 5 可以构成直角三角形的三边。

例4.

Problem 2023. Is this triangle right-angled?

Given any three positive numbers a, b, c, return true if the triangle with sides a, b and c is right-angled. Otherwise, return false.

(给定任意三个正数 a、b、c,如果以 a、b 和 c 为边构成的三角形是直角三角形,则返回 true。否则返回 false。)

以下是用 MATLAB 编写的程序,用于确定给定三个正数 a、b、c 是否构成一个直角三角形:

function result = isRightAngledTriangle(a, b, c)
    % Check if the triangle with sides a, b, and c is right-angled
    result = false;
    if a^2 + b^2 == c^2 || a^2 + c^2 == b^2 || b^2 + c^2 == a^2
        result = true;
    end
end

 可以调用这个函数并传入三个数值来检查它们是否构成一个直角三角形。例如,调用 isRightAngledTriangle(3, 4, 5) 将返回 true,因为 3、4 和 5 可以构成直角三角形。

例5.

Problem 2021. Is this triangle right-angled?

Given three positive numbers a, b, c, where c is the largest number, return true if the triangle with sides a, b and c is right-angled. Otherwise, return false.

(给定三个正数 a、b、c,其中 c 是最大的数,如果以 a、b 和 c 为边构成的三角形是直角三角形,则返回 true。否则返回 false。)

function result = isRightAngledTriangleWithMaxC(a, b, c)
    % Check if the triangle with sides a, b, and c is right-angled and c is the largest
    result = false;
    if c^2 == a^2 + b^2 && c > a && c > b
        result = true;
    end
end

可以调用这个函数并传入三个数值来检查它们是否满足条件。例如,调用 isRightAngledTriangleWithMaxC(3, 4, 5) 将返回 true,因为 3、4 和 5 可以构成直角三角形,并且 5 是最大的数

例6.

Problem 2020. Area of an Isoceles Triangle

An isosceles triangle has equal sides of length x and a base of length y. Find the area, A, of the triangle.

(等腰三角形的两边长度相等,为 x,底边长度为 y。找出三角形的面积 A。)

function area = isoscelesTriangleArea(x, y)
    % Calculate the area of an isosceles triangle with equal sides of length x and base of length y
    height = sqrt(x^2 - (y/2)^2); % 计算三角形的高度
    area = 0.5 * y * height; % 计算三角形的面积
end

 可以调用这个函数并传入两个数值 x 和 y 来计算等腰三角形的面积。例如,调用 isoscelesTriangleArea(5, 6) 将返回该等腰三角形的面积。

例7.

Problem 2018. Side of a rhombus

If a rhombus has diagonals of length x and x+1, then what is the length of its side, y?

(如果一个菱形的对角线长度分别为 x 和 x+1,那么它的边长 y 是多少?)

要找到菱形的边长,可以利用菱形的对角线长度的性质。菱形的对角线相交于90度角,并且它们互相平分对方。因此,我们可以利用勾股定理来找到菱形的边长。假设菱形的边长为 y,根据勾股定理,对角线的长度为:

 

解这个方程组,我们可以得到 y 的值。以下是相应的 MATLAB 程序:

function y = rhombusSideLength(x)
    % Calculate the side length of a rhombus with diagonals of length x and x+1
    y = sqrt(2*x^2 + 2*x + 1);
end

可以调用这个函数并传入一个数值 x 来计算菱形的边长。例如,调用 rhombusSideLength(3) 将返回菱形的边长。

例8.

Problem 2017. Side of an equilateral triangle

If an equilateral triangle has area A, then what is the length of each of its sides, x?

(如果一个正三角形的面积为 A,那么它的每条边的长度 x 是多少?)

要找到正三角形的边长,可以利用正三角形面积的公式。正三角形的面积公式为

 

我们可以通过解上述方程来找到边长 x。以下是相应的 MATLAB 程序:

function x = equilateralTriangleSideLength(A)
    % Calculate the side length of an equilateral triangle with area A
    x = sqrt((4 * A) / sqrt(3));
end

可以调用这个函数并传入一个数值 A 来计算正三角形的边长。例如,调用 equilateralTriangleSideLength(9) 将返回正三角形的边长。

例9

 Problem 2016. Area of an equilateral triangle

Calculate the area of an equilateral triangle of side x.

(计算边长为 x 的等边三角形的面积)

要计算边长为 x 的等边三角形的面积,可以使用以下公式:

我们可以通过解上述方程来找到边长 x。以下是相应的 MATLAB 程序:

function area = equilateralTriangleArea(x)
    % Calculate the area of an equilateral triangle with side length x
    area = (sqrt(3) / 4) * x^2;
end

可以调用这个函数并传入边长 x 的数值来计算等边三角形的面积。例如,调用 equilateralTriangleArea(6) 将返回边长为 6 的等边三角形的面积。

例10.

Problem 2015. Length of the hypotenuse

Given short sides of lengths a and b, calculate the length c of the hypotenuse of the right-angled triangle.

(给定直角三角形的短边长度为 a 和 b,请计算直角三角形斜边的长度 c。)

 要计算直角三角形的斜边长度 c,可以使用勾股定理。勾股定理表明,在直角三角形中,斜边的平方等于两条直角边的平方和。

以下是相应的 MATLAB 程序:

function c = hypotenuseLength(a, b)
    % Calculate the length of the hypotenuse of a right-angled triangle
    c = sqrt(a^2 + b^2);
end

可以调用这个函数并传入直角三角形的两条直角边的长度来计算斜边的长度。例如,调用 hypotenuseLength(3, 4) 将返回直角三角形斜边的长度。

例11.

Problem 2019. Dimensions of a rectangle

The longer side of a rectangle is three times the length of the shorter side. If the length of the diagonal is x, find the width and length of the rectangle.

(长方形的长边是短边长度的三倍。如果对角线的长度为 x,则找出长方形的宽度和长度。)

要找到长方形的宽度和长度,可以利用长方形的对角线长度和长短边的关系。我们知道,在长方形中,对角线的平方等于长和宽的平方和。

设短边长度为 ( a ),则长边长度为 ( 3a )。根据勾股定理,有:

解这个方程,我们可以找到 ( a ) 的值,进而可以计算出长和宽。以下是相应的 MATLAB 程序:

function [length, width] = rectangleDimensions(x)
    % Calculate the length and width of a rectangle given the length of the diagonal x
    a = x / sqrt(10); % Calculate the length of the shorter side
    length = 3 * a; % Calculate the length of the longer side
    width = a; % Width is equal to the length of the shorter side
end

 

可以调用这个函数并传入对角线长度 x 的值来计算长方形的宽度和长度。例如,调用 rectangleDimensions(10) 将返回长方形的宽度和长度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值