使用单调栈解题

本文介绍了单调栈在解决数组问题中的应用,通过四个具体的LeetCode题目(496题-下一个更大元素,503题-下一个更大元素II,42题-接雨水,456题-132模式)详细阐述了单调栈的使用方法和解题思路。对于每个题目,都提供了详细的解题过程和代码实现,展示了如何利用单调栈有效地找到数组中的特定元素或计算相关数值。

何为单调栈?栈中元素从栈顶到栈底,要么单调递增排列,要么单调递减排列。

如单调递增栈就是从栈顶到栈底的元素值依次增大,下面是几个单调栈的应用。

目录

1.力扣第496题—下一个更大元素

2. 力扣第503题—下一个更大元素II(循环数组)

3.力扣第42题——接雨水 

4.力扣第456题——132模式


1.力扣第496题—下一个更大元素

下一个更大元素 I

题目描述:

nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。

给你两个没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,其中nums1 是 nums2 的子集。

对于每个 0 <= i < nums1.length ,找出满足 nums1[i] == nums2[j] 的下标 j ,并且在 nums2 确定 nums2[j] 的 下一个更大元素 。如果不存在下一个更大元素,那么本次查询的答案是 -1 

返回一个长度为 nums1.length 的数组 ans 作为答案,满足 ans[i] 是如上所述的 下一个更大元素 。

这个问题我们实际上只需要观察 nums2 即可,我们倒着从 nums2 的最后一个元素开始,找到 nums2 中的每个元素的下一个最大元素。

在遍历的时候,维护一个单调递增的栈,当栈为空时返回-1,表明当前栈顶没有元素比当前元素大。

栈不为空时就比较栈顶元素和当前元素。若栈顶元素 < 当前元素,就将栈顶出栈,直到遇到大于当前元素的值,这个值就是我们要的答案。找到之后,再将当前元素压入栈中,继续去遍历下一个元素。

代码实现:

    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        //维护一个单调栈
        Stack<Integer> stack = new Stack<>();
        //存储元素对应的下一个更大值
        Map<Integer,Integer> map = new HashMap<>();
        for(int i = nums2.length-1;i >= 0;i--){
            //栈不为空而且栈顶元素小于当前元素,一直弹出栈顶
            while (!stack.isEmpty() && stack.peek() < nums2[i]){
                stack.pop();
            }
            int value =  stack.isEmpty() ? -1 : stack.peek();
            //找到了当前元素的下一个更大元素之后,将当前元素入栈
            stack.push(nums2[i]);
            map.put(nums2[i],value );
        }
        //遍历nums1,取出map中对应的value
        int[] ret = new int[nums1.length];
        for (int i = 0; i < ret.length; i++) {
            ret[i] = map.get(nums1[i]);
        }
        return ret;

    }

2. 力扣第503题—下一个更大元素II(循环数组)

503. 下一个更大元素 II

题目描述: 

给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。

数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1 。

维护一个单调栈,但栈中存放的是元素对应的下标 

 代码实现:

    public int[] nextGreaterElements(int[] nums) {
        int n = nums.length;
        Stack<Integer> stack = new Stack<>();
        int[] ret = new int[n];
        //初始化数组
        for (int i = 0; i < n; i++) {
            ret[i] = -1;
        }
        //只需要遍历两遍即可,而且最后一个元素只需要遍历一遍--> 2*nums.length - 1
        for (int i = 0; i < 2*n - 1 ; i++) {
            //栈里面保存元素在数组中的下标,而不是具体的数字
            //当栈不为空,而且栈顶,代表 栈顶下标元素 < 当前元素值,这个值就是答案,将它写入ret中
            while (!stack.isEmpty() && nums[stack.peek()] < nums[i % n]){
                ret[stack.peek()] = nums[i % n];
                //之后将该下标弹出
                stack.pop();
            }
            //此时栈为空或者 栈顶下标元素 > 当前元素值,将当前下标入栈
            stack.push(i % n);
        }
        return ret;
    }

3.力扣第42题——接雨水 

42. 接雨水

题目描述:给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6

  • 当后面的柱子高度比前面的低时,是无法接雨水的,
  • 当找到一根比前面高的柱子,就可以计算接到的雨水

因此,我们可以在遍历数组时维护一个栈,栈里面存放的是元素的索引。

  1. 如果当前的条形块 <= 栈顶的条形块,意思是当前的条形块被栈中的前一个条形块界定。——将条形块的索引入栈
  2. 当前条形块 > 栈顶的条形快,可以弹出栈顶元素计算个数,累加答案。 
  3. 栈为空时直接入栈
public class LeetCode42{
    public int trap(int[] height) {
        Deque<Integer> deque = new LinkedList<>();
        int ret = 0;
        for (int i = 0; i < height.length; i++) {
            while (!deque.isEmpty() && height[i] > height[deque.peek()]){
                //栈不为空,且当前元素 > 栈顶元素,可以存储雨水
                //取出栈顶元素
                int top = deque.pop();
                //取出栈顶后,如果栈为空,两个柱子无法存储雨水
                if(deque.isEmpty()){
                    break;
                }
                //左边界
                int left = deque.peek();
                //宽度 = 右边界 - 左边界 - 1
                int width = i - left - 1;
                //高度 = min(左边界高度 , 右边界高度) - height[top]
                int high = Math.min(height[left] , height[i]) - height[top];
                //个数 = 面积 = 长 * 宽
                ret += width * high;
            }
            //将元素入栈
            deque.push(i);
        }
        return ret;
    }
}

4.力扣第456题——132模式

456. 132 模式

题目描述:给你一个整数数组 nums ,数组中共有 n 个整数。判断是否有132 模式的子序列 满足:i < j < knums[ i ] < nums[ k ] < nums[ j ] 

我们可以建立单调栈,从后往前遍历。
若当前元素 nums[ i ]  > 栈顶元素,因为是从后往前遍历的,所以当前元素的索引肯定小于栈顶元素的索引。——可以猜测当前元素 nums[ i ] 可能是我们要找的 num[ j ]

于是弹出栈中所有的比nums[ i ]小的元素,这些元素就是符合条件的 nums[K],最后一个弹出的就是符合条件的最大 nums[K]

继续往前扫描,如果出现了比最大 nums[K]小的元素,则符合条件。

public class LeetCode456 {
    public boolean find132pattern(int[] nums) {
        Deque<Integer> deque = new LinkedList<>();
        int k = Integer.MIN_VALUE;
        for (int i = nums.length - 1; i >= 0; i--){
            if(nums[i] < k){
                return true;
            }
            while (!deque.isEmpty() && nums[i] > deque.peek()){
                //当前元素可能是 nums[ j ],保存最大的那个nums[ k ]
                k = Math.max(k,deque.pop());
            }
            deque.push(nums[i]);
        }
        return false;
    }
}

单调栈是一种特殊的栈,其特殊之处在于栈内的元素都保持一个单调性,在部分解题场景中可避免暴力解法的高间复杂度问题[^1][^2][^5]。C++ 中没有内置的单调栈函数,但可以通过自定义函数和使用标准库中的 `stack` 容器来实现单调栈的功能。 ### 单调栈插入元素的实现 以下是一个实现单调减少栈插入元素的函数示例: ```cpp #include <iostream> const int N = 100010; int stk[N], tt; // 插入元素到单调减少栈 void insert(int x) { // 判断栈是否为空,并且把小于等于x的数都弹出 while (tt && stk[tt] <= x) tt -- ; stk[ ++ tt] = x; } int main() { insert(5); insert(3); insert(7); for (int i = 1; i <= tt; i++) { std::cout << stk[i] << " "; } return 0; } ``` 在这个示例中,`insert` 函数实现了向单调减少栈中插入元素的功能。当插入元素,会将栈中小于等于该元素的数弹出,以保证栈内元素的单调性 [^3]。 ### 单调栈应用示例:每日温度问题 该问题是找到每个温度之后第一个比它高的温度的天数。以下是使用单调栈解决该问题的代码: ```cpp #include <iostream> #include <vector> #include <stack> using namespace std; vector<int> dailyTem(const vector<int>& tem) { int n = tem.size(); vector<int> result(n, 0); stack<int> st; // 从右至左遍历温度数组 for (int i = n - 1; i >= 0; --i) { // 当栈不为空且栈顶温度小于等于当前温度,出栈 while (!st.empty() && tem[st.top()] <= tem[i]) { st.pop(); } if (!st.empty()) { // 栈不为空,记录下一个更高温度出现的天数 result[i] = st.top() - i; } else { // 栈为空,记录 0 result[i] = 0; } // 将当前位置索引入栈 st.push(i); } return result; } int main() { vector<int> tem = {73, 74, 75, 71, 69, 72, 76, 73}; vector<int> output = dailyTem(tem); cout << "["; for (int i = 0; i < output.size(); ++i) { if (i > 0) { cout << ", "; } cout << output[i]; } cout << "]" << endl; return 0; } ``` 在这个示例中,`dailyTem` 函数使用单调栈来解决每日温度问题。从右至左遍历温度数组,利用单调栈找到每个温度之后第一个比它高的温度的天数 [^4]。
评论 7
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值