自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(589)
  • 收藏
  • 关注

原创 基于LabVIEW开发的条形码识别、数据库存储及信息查询详解

LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是美国国家仪器公司(National Instruments,简称NI)推出的一款图形化编程语言和开发环境,广泛应用于数据采集、仪器控制和自动化测试等领域。其图形化编程方式使得开发者可以直观地构建复杂的应用程序,极大地降低了开发难度和成本。通过本文的详细介绍,我们全面解析了如何基于LabVIEW开发一套完整的条形码识别系统,并实现条形码信息的数据库存储和查询功能。

2024-07-25 02:55:32 2

原创 使用STM32驱动ST7789芯片实现3D图像测试:硬件SPI与DMA加速详解

分辨率支持:最高可支持240x320的分辨率。通信接口:支持4线SPI、8/9/16/18位并行接口。低功耗设计:支持低功耗模式,适合电池供电设备。丰富的命令集:提供多种显示控制命令,方便实现复杂的显示效果。本文详细介绍了如何在STM32平台上驱动ST7789显示屏,实现3D图像测试,并利用硬件SPI与DMA进行加速。通过完整的示例源码和详尽的解释,我们展示了从硬件连接、驱动程序编写到3D图像绘制和优化的全过程。希望本文能够为广大开发者提供有价值的参考,帮助大家快速上手并掌握这项技术。

2024-07-25 02:32:54 2

原创 全面解析CH341T模块及其驱动安装、使用与开发:从芯片手册到Demo程序详解

CH341T是一款由南京沁恒微电子有限公司(WCH)推出的USB转串口芯片,广泛应用于嵌入式系统、工业控制、串口通信等领域。它支持多种串口通信模式,包括RS232、RS485等,具有高稳定性和易用性。

2024-07-25 02:11:03 2

原创 使用MATLAB计算Logistics和Burr分布的反函数值详解

Logistics分布是一种连续概率分布,常用于描述增长过程和预测模型。它的概率密度函数和累积分布函数具有简单的形式,因此在实践中应用广泛。Burr分布是一种连续概率分布,由二十世纪五十年代的美国数学家伊夫·伯尔(Irving Burr)提出。它具有多种形式,可以用来拟合不同类型的数据。Burr分布在经济学、工程和生物统计等领域有广泛的应用。本文详细介绍了如何使用MATLAB计算Logistics分布和Burr分布的反函数值,并通过具体的代码示例展示了其应用。

2024-07-25 02:07:45 1

原创 深度解析Meta Llama 3.1-405B AI模型:多项跑分超越GPT-4o,未来前景与挑战并存

在当前的人工智能(AI)领域,Meta推出的Llama 3.1-405B AI模型无疑引起了广泛的关注。作为一款开源的超大规模语言模型,Llama 3.1-405B不仅在多项评测任务上超越了GPT-4o,还带来了全新的技术视角和挑战。本文将详细解析Llama 3.1-405B的优势和不足,探讨其未来的应用前景与挑战,并结合实际案例和代码示例,深入剖析这款模型的技术细节。

2024-07-25 02:01:34 1

原创 深入探讨Python在机器学习中的应用:从技术路线到模型验证

文本摘要技术可以帮助我们从长文本中提取出最重要的内容。目前常用的方法包括基于抽取的文本摘要和基于生成的文本摘要。# 基于抽取的文本摘要print("文本摘要:", summary)

2024-07-25 01:51:01 1

原创 使用Python对二级减速齿轮箱齿轮故障的振动信号进行仿真分析

通过本文的介绍,我们了解了齿轮箱故障的常见类型以及振动信号仿真的基本原理。通过使用Python进行齿轮箱振动信号的仿真和分析,可以有效地识别齿轮箱的故障类型,从而提高设备的可靠性和生产效率。在实际应用中,可以结合更多的信号处理和机器学习方法,进一步提高故障诊断的准确性和自动化程度。本文详细介绍了如何使用Python生成仿真数据、进行信号处理与分析,并通过具体的代码示例展示了各种方法的应用。希望本文对您有所帮助,如果有任何问题或建议,欢迎交流讨论。

2024-07-25 01:46:18 1

原创 使用C++实现基于STM32局域网远程烧录的详细指南

随着物联网和智能设备的普及,嵌入式系统的远程更新和维护变得越来越重要。传统的嵌入式系统烧录方法需要通过串口、JTAG等接口进行现场烧录,这不仅费时费力,而且在设备分布广泛的情况下显得尤为不便。通过局域网实现对嵌入式设备的远程烧录,不仅可以提高效率,还能实现批量更新和远程维护。本文详细介绍了使用C++实现基于STM32局域网远程烧录的方法,包括硬件和软件环境准备、STM32固件编写、PC端烧录程序实现以及远程烧录流程。通过实例验证,证明了该方法的有效性和可行性。

2024-07-04 13:00:59 200

原创 使用Matlab编程实现基于灰色系统GM(1,1)模型的滑坡位移预测:深入解析与实例探讨

滑坡作为一种地质灾害,常常对人类社会造成巨大的破坏和损失。近年来,随着科学技术的进步,滑坡预测方法也在不断发展。其中,基于数学模型的预测方法因其科学性和可操作性,受到了广泛关注。灰色系统理论作为一种处理不确定性和小样本数据的方法,因其简洁高效的特点,在滑坡位移预测中得到了广泛应用。GM(1,1)模型是灰色系统理论中的一种常用模型,适用于处理单变量时间序列数据。该模型通过对原始数据进行累加生成,构建微分方程,从而实现对未来数据的预测。

2024-07-04 12:57:19 175

原创 使用Matlab编程实现双隐含层BP神经网络预测的深入解析

Matlab是一款功能强大的数值计算软件,广泛应用于科学研究和工程计算中。它具有丰富的工具箱和函数库,支持矩阵运算、数据可视化、信号处理、控制系统设计等多种功能,非常适合实现神经网络的训练和预测。为了验证普通BP神经网络和双隐含层BP神经网络的预测性能,我们选用一个真实数据集进行测试。假设我们选择一个常用的回归数据集,该数据集包含若干个样本,每个样本有多个特征和一个目标值。

2024-07-04 12:53:23 182

原创 利用LSTM算法进行数据预测和数据分析:详细解析及应用实例

LSTM,全称为Long Short-Term Memory,是一种特殊的循环神经网络(RNN),由Hochreiter和Schmidhuber于1997年提出。与传统的RNN不同,LSTM能够在更长的时间跨度内保持信息,从而在处理序列数据时表现出色。LSTM的核心在于其独特的结构设计,包括输入门、遗忘门和输出门,这些门的设计使得LSTM能够有效地控制信息的流动和记忆的保留,从而在长时间序列数据处理中表现出色。LSTM作为一种强大的深度学习模型,在数据预测和数据分析中具有广泛的应用前景。

2024-07-04 12:49:21 122

原创 构建基于Python和LangChain的信息抽取链:从非结构化文本中提取结构化信息

在开始信息抽取之前,我们需要定义一个模式(Schema),来描述我们希望从文本中提取哪些信息。我们将使用Pydantic来定义一个示例模式,用于提取个人信息。在上述代码中,我们定义了一个Person类,包含三个可选字段:姓名、发色和身高。每个字段都有一个描述,帮助模型更好地理解需要提取的信息。我们将定义一个模式来提取上述新闻文章中的关键信息。

2024-07-04 12:39:34 62

原创 构建一个使用Python和LangChain的生成合成数据系统:从基础到高级应用

每个数据集都有其特定的结构或“模式”。在本教程中,我们将定义一个医疗账单的数据模型。通过定义数据模型,我们可以告知合成数据生成器我们期望的数据结构和性质。在上述代码中,我们定义了一个patient_id(患者ID)、(患者姓名)、(诊断代码)、(手术代码)、(总费用)和(保险理赔金额)。

2024-07-04 12:34:27 15

原创 深度解析:基于C++的CAMShift目标跟踪算法实现

CAMShift算法是Mean Shift算法的改进版本。Mean Shift是一种基于密度梯度的迭代优化算法,通过不断迭代将数据点移动到密度最大的区域,从而实现目标跟踪。CAMShift算法在每一帧图像中自适应调整搜索窗口的大小和位置,能够适应目标的尺度变化和形变。初始化:设定初始搜索窗口的位置和大小。颜色直方图计算:在初始窗口内计算目标的颜色直方图。Mean Shift迭代:在当前帧图像中,根据颜色直方图计算目标的概率分布,并通过Mean Shift算法迭代,找到目标的质心。窗口调整。

2024-07-01 00:06:39 211

原创 使用C++实现5G信道模拟器:深入探讨与代码示例

信道估计是指在无线通信系统中,接收端估计出信道的特性参数,以便对接收到的信号进行有效解调和解码。由于无线信道的复杂性和不可预测性,信道估计变得尤为重要。它不仅影响到通信系统的性能,还直接决定了通信的质量。在5G通信系统中,信道估计变得更加复杂。这是因为5G系统引入了许多新的技术,如大规模MIMO(多输入多输出)、毫米波通信和波束成形等。这些技术虽然提高了系统的性能,但也带来了信道估计的难度。

2024-06-30 23:55:01 25

原创 检索增强生成(RAG):利用Python、LangChain和OpenAI实现前沿的自然语言处理技术

检索增强生成(RAG)是一种为大型语言模型提供外部知识源的技术。通过引入外部知识源,RAG能够生成更加准确且符合上下文的答案,从而减少模型幻觉的发生。RAG的核心思想是将生成模型与检索器模块相结合,利用检索器从外部知识源中获取相关信息,再将这些信息作为生成模型的输入,最终生成准确的答案。本文详细介绍了检索增强生成(RAG)的概念、理论和应用场景,并通过Python、LangChain和OpenAI实现了一个简单的RAG管道。

2024-06-30 19:53:20 753

原创 构建基于Python和LangChain的信息抽取链:从非结构化文本中提取结构化信息

在开始信息抽取之前,我们需要定义一个模式(Schema),来描述我们希望从文本中提取哪些信息。我们将使用Pydantic来定义一个示例模式,用于提取个人信息。在上述代码中,我们定义了一个Person类,包含三个可选字段:姓名、发色和身高。每个字段都有一个描述,帮助模型更好地理解需要提取的信息。我们将定义一个模式来提取上述新闻文章中的关键信息。

2024-06-30 19:01:39 17

原创 使用Python和LangChain构建一个文本标签分类系统:从基础到高级应用

为了进行文本分类,我们需要定义一个数据模型来描述我们希望从文本中提取的信息。这里我们使用Pydantic模型来定义一个分类模式。在上述代码中,我们定义了一个sentiment(情感)、(攻击性)和language(语言)。...,

2024-06-30 19:01:23 588

原创 检索增强生成(RAG):利用Python、LangChain和OpenAI实现前沿的自然语言处理技术

检索增强生成(RAG)是一种为大型语言模型提供外部知识源的技术。通过引入外部知识源,RAG能够生成更加准确且符合上下文的答案,从而减少模型幻觉的发生。RAG的核心思想是将生成模型与检索器模块相结合,利用检索器从外部知识源中获取相关信息,再将这些信息作为生成模型的输入,最终生成准确的答案。本文详细介绍了检索增强生成(RAG)的概念、理论和应用场景,并通过Python、LangChain和OpenAI实现了一个简单的RAG管道。

2024-06-30 18:57:45 272

原创 深入探讨LangChain、RAG技术与AI代理:构建高效、准确的大型语言模型应用

LangChain是一个开源框架,专为构建基于大型语言模型的应用而设计。该框架提供了一系列工具和抽象层,使开发者能够轻松定制、优化和扩展LLM的输出,从而满足各种应用需求。LangChain的核心组件包括提示链(Prompt Chain)、模板自定义和数据集访问等。模板自定义功能使开发者能够根据具体需求调整和定制现有模板。这一功能非常重要,因为不同应用场景对LLM输出的要求可能不同。通过自定义模板,可以确保模型的输出更符合特定应用的需求。

2024-06-30 18:44:30 384

原创 深入理解LangChain:构建高效多文档内容摘要和AI代理系统的终极指南

LangChain是一个开源框架,用于构建基于大型语言模型(LLM)的应用程序。LLM是基于大量数据预先训练的大型深度学习模型,可以生成对用户查询的响应,例如回答问题或根据基于文本的提示创建图像。LangChain提供各种工具和抽象,以提高模型生成的信息的定制性、准确性和相关性。例如,开发人员可以使用LangChain组件来构建新的提示链或自定义现有模板。LangChain还包括一些组件,可让LLM无需重新训练即可访问新的数据集。

2024-06-30 18:09:53 279

原创 构建一个强大的多文档内容摘要系统:使用Python和LangChain的实战指南

语言模型(LLMs):用于理解和生成自然语言文本。文档加载器:如WebBaseLoader,用于从各种来源加载文档内容。摘要生成方法Stuff:简单地将所有文档内容连接成一个提示,然后传递给LLM。Map-Reduce:将文档分批进行摘要,然后汇总这些摘要生成最终摘要。Refine:通过迭代的方式不断更新摘要。在Stuff方法中,我们将所有文档内容连接成一个提示,然后传递给LLM进行处理。# 定义提示模板"{text}"# 定义LLM链# 定义StuffDocumentsChain。

2024-06-30 18:08:37 336

原创 构建基于PDF文档的问答系统:使用Python和LangChain实现高效文档处理与信息检索

在现代信息化社会中,PDF文件是保存和传播重要信息的常用格式。这些文件中往往包含丰富的非结构化数据,如企业报告、研究论文和政府文件等。然而,由于其格式和内容的复杂性,直接使用传统的文本处理工具处理PDF文件存在一定困难。为了解决这一问题,本文将详细介绍如何利用Python和LangChain库,构建一个能够对PDF文档内容进行问答的系统。通过本文的讲解,您将学会如何加载PDF文档、将其内容转换为语言模型(LLM)可处理的格式,并构建一个检索增强生成(RAG)系统,能够高效回答与文档内容相关的问题。

2024-06-27 15:59:27 756

原创 使用Python和LangChain构建基于图数据库的问答应用程序:全面指南

在当今数据驱动的世界中,图数据库以其独特的结构和强大的关联性管理能力,逐渐成为数据存储和查询的重要选择。特别是在构建问答系统时,图数据库能够高效地处理复杂的关系查询,提供快速且准确的答案。本篇博客将详细介绍如何使用Python和LangChain库构建一个基于图数据库的问答应用程序。我们将重点介绍Neo4j图数据库,并演示如何将其与OpenAI模型集成,实现自然语言问答。

2024-06-27 15:52:27 868

原创 使用Python和LangChain构建本地RAG应用程序的全面指南

在当前的大数据和人工智能时代,如何高效地利用本地资源来运行复杂的语言模型(LLM)是一个非常重要的问题。特别是随着PrivateGPT、llama.cpp、GPT4All和llamafile等项目的流行,运行本地LLM的需求变得越来越迫切。本篇博客将详细介绍如何使用Python和LangChain库来构建一个本地运行的检索增强生成(RAG)应用程序。

2024-06-27 15:49:51 1009

原创 使用Python和LangChain构建查询分析系统:完整指南

在本文中,我们将探讨如何利用LangChain库和Python语言来构建一个查询分析系统。这个系统的核心功能包括从YouTube视频中加载文档、创建索引、执行检索以及应用查询分析来优化搜索结果。我们将通过实例逐步展示每个步骤的实现,并提供详细的代码示例和解释。

2024-06-27 15:43:38 514

原创 使用Python和LangChain构建SQL数据上的问答系统:完整指南

在大数据和人工智能技术的推动下,自动化的数据查询和分析变得越来越重要。特别是在处理结构化数据时,如SQL数据库,构建一个能够智能问答的系统,可以极大地提升数据利用效率。本文将详细介绍如何使用Python和LangChain构建一个SQL数据上的问答系统,旨在帮助开发者实现一个智能化、自动化的数据库查询和问答应用。

2024-06-27 15:38:15 906

原创 使用Python和LangChain构建具有会话记忆的检索增强生成(RAG)应用的详细指南

RAG是一种技术,通过结合LLM的推理能力和外部数据源来增强模型的知识。虽然LLM可以处理广泛的话题,但它们的知识仅限于训练时使用的公开数据,且截至时间固定。如果希望构建能够处理私有数据或模型截止日期之后数据的AI应用,就需要通过RAG来增强模型的知识。这一过程通过检索相关信息并将其插入到模型的提示中来实现,从而提高回答的准确性和相关性。

2024-06-27 15:32:27 246

原创 使用Python和LangChain构建检索增强生成(RAG)应用的详细指南

RAG是一种技术,用于增强LLM的知识,使其能够处理额外的数据。尽管LLM能够处理广泛的话题,但其知识仅限于训练时所用的公共数据,且截至时间有限。如果希望构建能够处理私有数据或模型截止日期之后的数据的AI应用,就需要通过RAG来增强模型的知识。具体来说,RAG通过检索相关信息并将其插入到模型提示中,从而实现这一目标。LangChain提供了一系列组件,旨在帮助构建Q&A应用和更广泛的RAG应用。本文将重点介绍处理非结构化数据的Q&A技术。我们还可以轻松自定义提示,以适应不同的应用场景。{context}

2024-06-27 15:30:38 829

原创 使用Python和LangChain构建强大智能代理:详细指南

在人工智能和自然语言处理领域,智能代理(Agent)已经成为实现复杂任务的重要工具。智能代理能够通过调用工具和执行操作来完成各种任务,而不仅仅是输出文本。LangChain作为一个强大的框架,提供了构建智能代理的工具和功能,使得开发者可以轻松创建和管理复杂的代理系统。本文将详细介绍如何使用Python和LangChain构建一个强大的智能代理,该代理能够与搜索引擎交互,并具有对话记忆功能。

2024-06-27 15:24:36 608

原创 深入了解使用Python和LangChain构建强大的向量存储和检索系统

在大数据和人工智能领域,如何高效地存储和检索信息一直是一个重要的研究方向。随着深度学习和自然语言处理技术的发展,向量存储和检索技术(Vector Stores and Retrievers)应运而生,并在很多应用中得到了广泛的使用。LangChain作为一个强大且灵活的框架,为开发者提供了构建和管理向量存储和检索系统的工具。本文将详细介绍如何使用LangChain构建一个强大的向量存储和检索系统。

2024-06-27 15:22:39 944

原创 使用LangChain构建强大的对话机器人:详细指南

在人工智能(AI)迅猛发展的今天,对话机器人已成为各行业不可或缺的一部分。无论是客服支持、虚拟助手还是智能家居系统,对话机器人都发挥着重要作用。本文将详细介绍如何使用LangChain构建一个功能强大的对话机器人,能够进行对话并记住先前的互动。我们将从环境设置开始,逐步讲解如何使用语言模型、提示模板、对话历史管理等关键技术,最终展示如何使用LangServe部署你的应用程序。

2024-06-27 15:20:38 753

原创 使用LangChain快速构建简单的LLM应用:详细教程

在当今迅速发展的人工智能(AI)领域,语言模型(LLM)已经成为各种应用程序中的重要工具。LangChain作为一个强大且灵活的框架,使得开发者能够高效地构建和部署基于LLM的应用程序。本教程将带你一步步了解如何使用LangChain构建一个简单的文本翻译应用程序。通过本文,你将学会如何进行环境设置、调用语言模型、创建和使用提示模板、解析输出以及如何使用LangServe部署你的应用程序。

2024-06-27 12:58:34 1004

原创 深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南

LangChain框架通过一系列开源库提供了丰富的功能,支持开发者快速构建、优化和部署LLM应用。")LangChain框架通过其丰富的功能和强大的生态系统,为开发者提供了一个高效的工具,用于构建、优化和部署大型语言模型应用。通过本文的详细介绍和实际案例,希望读者能够深入理解LangChain框架的工作原理和应用场景,并能够利用其强大功能,开发出满足业务需求的LLM应用。未来,随着技术的不断发展,LangChain框架必将为更多领域带来变革和创新。

2024-06-27 12:52:50 914

原创 深入探索RAG技术:智谱AI在大模型中的应用与实践案例研究

RAG技术包括三个核心部分:索引(Indexing)、检索(Retrieval)和生成(Generation)。每个部分都有其独特的挑战和解决方案。RAG技术作为大模型应用的重要组成部分,展现了巨大的潜力和广阔的应用前景。智谱AI通过不断探索和实践,积累了丰富的经验,并在多个行业和场景中取得了显著的成果。未来,随着技术的进一步发展和创新,RAG技术必将为更多领域带来变革和发展。我们期待着在不久的将来,RAG技术能够为我们的生活和工作带来更多的便利和惊喜。

2024-06-27 12:40:40 857

原创 基于MATLAB深度学习的雷达辐射源信号分选与识别详解及实现

多样性:雷达信号种类繁多,不同的雷达系统使用不同的调制方式和波形。常见的调制方式包括线性调频(LFM)、脉冲压缩、跳频等。这些多样化的调制方式使得雷达信号在时频域表现出丰富的特征。复杂性:在复杂电磁环境中,雷达信号容易受到噪声和干扰的影响。这些噪声和干扰可能来自其他雷达系统、通信设备或自然现象。处理这些复杂信号需要强大的信号处理能力。时间敏感性:雷达信号的脉冲重复频率(PRF)和脉宽等参数在时间上具有很强的特征。这些时间特征是区分和识别不同雷达信号的重要依据。

2024-06-27 12:32:39 698

原创 在STM32F103上实现基于W5500的TFTP客户端:详细教程与实现

STM32F103是STMicroelectronics公司推出的一款基于ARM Cortex-M3内核的32位微控制器,具有低功耗、高性能、丰富的外设接口等特点,广泛应用于工业控制、消费电子、医疗设备等领域。TFTP是一种简单的文件传输协议,基于UDP协议工作,主要用于小文件传输。读取请求(RRQ):客户端请求从服务器读取文件。写入请求(WRQ):客户端请求向服务器写入文件。数据包(DATA):服务器向客户端发送数据包,或客户端向服务器发送数据包。确认包(ACK):接收方对数据包的确认。

2024-06-27 12:19:31 929

原创 使用MATLAB和Simulink进行航天器姿态控制仿真及动力学建模的详细教程

姿态控制是指对航天器在三维空间中的定向和姿态进行控制,确保航天器按照预定的轨迹和姿态飞行。定向控制:调整航天器的方向,使其指向目标位置。稳定控制:保持航天器在飞行过程中姿态的稳定性,避免不必要的抖动和旋转。姿态调整:根据任务需要,调整航天器的姿态,以完成特定的操作,如观测、通信等。MATLAB是一种高级编程语言和交互式环境,广泛应用于科学计算、数据分析和工程仿真。MATLAB提供了丰富的工具箱和函数库,支持矩阵运算、数值分析、信号处理、控制系统设计等多种功能。

2024-06-25 02:51:06 788

原创 使用Python编写基于价格差的原油对冲策略实现稳定盈利的详细教程

本文详细介绍了基于价格差的原油对冲策略的实现方法,从数据获取、头寸建立到收益计算,全面解析了对冲策略的实现过程。通过具体的代码示例和效果展示,帮助读者深入理解对冲策略在原油市场中的应用,并提供了一些实践技巧和优化建议。希望本文能为广大投资者和开发者提供帮助,助力在原油对冲领域不断前行。如果在实际应用中遇到问题,欢迎留言交流,共同探讨解决方案。祝大家交易顺利!

2024-06-25 02:07:32 701

原创 基于Fluent的质量传递UDF编写与应用详解

ANSYS Fluent是一个功能强大的计算流体动力学(CFD)软件,用于模拟流体流动、传热和相关的物理现象。Fluent广泛应用于航空航天、汽车、化工、能源等多个领域,能够处理复杂的几何形状和多种物理模型。质量传递是指物质从一个位置向另一个位置的移动过程,通常包括扩散和对流两种主要机制。在焊接和增材制造过程中,质量传递影响着材料的微观结构、力学性能和宏观形状,因此理解和模拟质量传递对优化工艺至关重要。

2024-06-25 01:41:18 483

使用Gazebo机器人的pymeshlab计算roboitc链接的惯性张量_Python_源码_下载.zip

使用Gazebo机器人的pymeshlab计算roboitc链接的惯性张量_Python_源码_下载.zip

2023-09-17

用于在Lambda上运行Inertia服务器端渲染的Sidecar函数。_PHP_源码_下载.zip

用于在Lambda上运行Inertia服务器端渲染的Sidecar函数。_PHP_源码_下载.zip

2023-09-17

视觉惯性里程计MSCKF算法的实现和改进,用于移动平台(例如机器人)的位姿估计_MATLAB_源码_下载.zip

视觉惯性里程计MSCKF算法的实现和改进,用于移动平台(例如机器人)的位姿估计_MATLAB_源码_下载.zip

2023-09-17

InertiaLaravelStack的CRUD生成器。_PHP_源码_下载.zip

InertiaLaravelStack的CRUD生成器。_PHP_源码_下载.zip

2023-09-17

电力系统低惯量瞬态仿真工具箱_Julia_源码_下载.zip

电力系统低惯量瞬态仿真工具箱_Julia_源码_下载.zip

2023-09-17

这是一个基于惯性Laravel的Inertia.js服务器端适配器,但适用于Fiber框架。_Go_源码_下载.zip

这是一个基于惯性Laravel的Inertia.js服务器端适配器,但适用于Fiber框架。_Go_源码_下载.zip

2023-09-17

适用于InertiaJS的PSR-15适配器_PHP_源码_下载.zip

适用于InertiaJS的PSR-15适配器_PHP_源码_下载.zip

2023-09-17

计算自行车骑行者系统的几何形状、质量、质心和转动惯量。_Python_源码_下载.zip

计算自行车骑行者系统的几何形状、质量、质心和转动惯量。_Python_源码_下载.zip

2023-09-17

视觉惯性里程计(VIO)和视觉轮里程计的MATLAB仿真_MATLAB_源码_下载.zip

视觉惯性里程计(VIO)和视觉轮里程计的MATLAB仿真_MATLAB_源码_下载.zip

2023-09-17

同步数据流(SDS)框架允许记录设备上的真实数据并在Arm虚拟硬件上回放。_C_Python_源码_下载.zip

同步数据流(SDS)框架允许记录设备上的真实数据并在Arm虚拟硬件上回放。_C_Python_源码_下载

2023-09-17

Xilinx基于PYNQ框架的预测维护项目_Jupyter Notebook_Python_源码_下载.zip

Xilinx基于PYNQ框架的预测维护项目_Jupyter Notebook_Python_源码_下载.zip

2023-09-17

目标是预测每台发动机的剩余使用寿命(RUL)。该数据集由NASA提供_Jupyter Notebook_源码_下载.zip

目标是预测每台发动机的剩余使用寿命(RUL)。该数据集由NASA提供_Jupyter Notebook_源码_下载.zip

2023-09-17

公司拥有一组传输每日汇总遥测属性的设备。预测性维护技术旨在帮助确定在役设备的状况,以便预测何时应进行维护。这种方法有望比.zip

公司拥有一组传输每日汇总遥测属性的设备。预测性维护技术旨在帮助确定在役设备的状况,以便预测何时应进行维护。这种方法有望比.zip

2023-09-17

此存储库是AWS博客文章的一部分,该文章描述了如何组合和利用AmazonKinesis、AWSGlue和AmazonSa.zip

此存储库是AWS博客文章的一部分,该文章描述了如何组合和利用AmazonKinesis、AWSGlue和AmazonSa.zip

2023-09-17

AzureDatabricks上的Spark模型批量评分:预测维护用例_Jupyter Notebook_Python_.zip

AzureDatabricks上的Spark模型批量评分:预测维护用例_Jupyter Notebook_Python_.zip

2023-09-17

本研讨会将让您熟悉利用AmazonSageMaker、AmazonPolly和AWSIoT套件构建端到端预测维护系统的一.zip

本研讨会将让您熟悉利用AmazonSageMaker、AmazonPolly和AWSIoT套件构建端到端预测维护系统的一.zip

2023-09-17

使用LSTM方法进行AircraftMotorHealth的预测维护_Jupyter Notebook_源码_下载.zip

使用LSTM方法进行AircraftMotorHealth的预测维护_Jupyter Notebook_源码_下载.zip

2023-09-17

使用LSTMTCN进行预测维护_Jupyter Notebook_源码_下载.zip

使用LSTMTCN进行预测维护_Jupyter Notebook_源码_下载.zip

2023-09-17

深度学习应用于预测性维护用例_Jupyter Notebook_Python_源码_下载.zip

深度学习应用于预测性维护用例_Jupyter Notebook_Python_源码_下载.zip

2023-09-17

这是使用深度学习模型的工业机器预测维护任务的示例代码和实施框架的存储库。_Jupyter Notebook_Python.zip

这是使用深度学习模型的工业机器预测维护任务的示例代码和实施框架的存储库。_Jupyter Notebook_Python.zip

2023-09-17

用于解析多个来源的圆二色性数据的代码_Clojure_源码_下载.zip

用于解析多个来源的圆二色性数据的代码_Clojure_源码_下载.zip

2023-09-17

自动解析应用光物理学圆二色光谱仪的输出并绘制原始数据。_Python_源码_下载.zip

自动解析应用光物理学圆二色光谱仪的输出并绘制原始数据。_Python_源码_下载.zip

2023-09-17

用于分析圆二色光谱数据的包装器_Python_Makefile_源码_下载.zip

用于分析圆二色光谱数据的包装器_Python_Makefile_源码_下载.zip

2023-09-17

执行从圆二色性到旋光色散的数值Kramers-Kronig变换。“蛙跳”方法用于数值积分。_Python_源码_下载.zip

执行从圆二色性到旋光色散的数值Kramers-Kronig变换。“蛙跳”方法用于数值积分。_Python_源码_下载.zip

2023-09-17

用于处理圆二色性数据的Web应用程序_Python_HTML_源码_下载.zip

用于处理圆二色性数据的Web应用程序_Python_HTML_源码_下载.zip

2023-09-17

计算FMO的吸收光谱和圆二色性光谱_Python_源码_下载.zip

计算FMO的吸收光谱和圆二色性光谱_Python_源码_下载.zip

2023-09-17

易于配置的入门模板可快速设置Jetstream惯性发生器_Vue_PHP_源码_下载.zip

易于配置的入门模板可快速设置Jetstream惯性发生器_Vue_PHP_源码_下载.zip

2023-09-17

Tensorflow和PyTorch实现视觉惯性里程计的无监督深度完成(RA-L2020年1月和ICRA2020)_Py.zip

Tensorflow和PyTorch实现视觉惯性里程计的无监督深度完成(RA-L2020年1月和ICRA2020)_Py.zip

2023-09-17

使用Laravel+InertiaJS+Vue+Vuetify的Starterkits项目_PHP_Vue_源码_下载.zip

使用Laravel+InertiaJS+Vue+Vuetify的Starterkits项目_PHP_Vue_源码_下载.zip

2023-09-17

用PHP、Laravel、Inertia.js、Tailwind和Vue.js编写的简单twitter-feed风格的R.zip

用PHP、Laravel、Inertia.js、Tailwind和Vue.js编写的简单twitter-feed风格的R.zip

2023-09-17

多点触摸XAML行为实现多点触摸操作(手势)和惯性。_C#_源码_下载.zip

多点触摸XAML行为实现多点触摸操作(手势)和惯性。_C#_源码_下载.zip

2023-09-17

使用惯性测量校准关节偏移。_MATLAB_Mathematica_源码_下载.zip

使用惯性测量校准关节偏移。_MATLAB_Mathematica_源码_下载.zip

2023-09-17

惯性(oxts2000)和激光雷达(velodynehdl-32e)接口_C++_MATLAB_源码_下载.zip

惯性(oxts2000)和激光雷达(velodynehdl-32e)接口_C++_MATLAB_源码_下载.zip

2023-09-17

一个Laravel10+样板应用程序,可用于使用Svelte构建Inertia应用程序_PHP_JavaScript_源.zip

一个Laravel10+样板应用程序,可用于使用Svelte构建Inertia应用程序_PHP_JavaScript_源.zip

2023-09-17

jQuery插件可逐步处理鼠标滚动,处理多种鼠标滚轮类型(点击、惯性等)_JavaScript_源码_下载.zip

jQuery插件可逐步处理鼠标滚动,处理多种鼠标滚轮类型(点击、惯性等)_JavaScript_源码_下载.zip

2023-09-17

具有惯性的3D球坐标相机_HTML_JavaScript_源码_下载.zip

具有惯性的3D球坐标相机_HTML_JavaScript_源码_下载.zip

2023-09-17

RTK视觉惯性导航滑动窗滤波器框架方法_C++_源码_下载.zip

RTK视觉惯性导航滑动窗滤波器框架方法_C++_源码_下载.zip

2023-09-17

这是使用Vue3、Laravel、TailwindCSS、Stripe和InertiaJS制作的Amazon克隆_PHP.zip

这是使用Vue3、Laravel、TailwindCSS、Stripe和InertiaJS制作的Amazon克隆_PHP.zip

2023-09-17

将变量闪存到InertiaJS并在会话中持续存在的快速方法_PHP_源码_下载.zip

将变量闪存到InertiaJS并在会话中持续存在的快速方法_PHP_源码_下载.zip

2023-09-17

使用Laravel8和jetstream惯性的测验应用程序_Vue_PHP_源码_下载.zip

使用Laravel8和jetstream惯性的测验应用程序_Vue_PHP_源码_下载.zip

2023-09-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除