(AB)'=A'+B'
(A+B)'=A'B' //德摩根定理
AB+A'C+BC=AB+A'C
代入定理:在任意一个包含A的逻辑等式中,若以另外一个逻辑式代入原式的A中,等式依然成立。例:A+BC=(A+B)(A+C) 把C→CD,则A+BCD=(A+B)(A+CD)
反演定理:作用:Y→Y' 变换规则: ·→+,+→ ·,0→1,1→0;变换顺序:先(),然后与,最后+
(AB)'=A'+B'
(A+B)'=A'B' //德摩根定理
AB+A'C+BC=AB+A'C
代入定理:在任意一个包含A的逻辑等式中,若以另外一个逻辑式代入原式的A中,等式依然成立。例:A+BC=(A+B)(A+C) 把C→CD,则A+BCD=(A+B)(A+CD)
反演定理:作用:Y→Y' 变换规则: ·→+,+→ ·,0→1,1→0;变换顺序:先(),然后与,最后+