力扣刷题-托普利茨矩阵

1、题目描述:

给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵,返回 true ;否则,返回 false 。

如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。

示例 1:

输入:matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出:true
解释:
在上述矩阵中, 其对角线为: 
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。 
各条对角线上的所有元素均相同, 因此答案是 True 。

示例 2:

输入:matrix = [[1,2],[2,2]]
输出:false
解释:
对角线 "[1, 2]" 上的元素不同。

2.解题思路:

        如果矩阵中的每个元素与它左上角的元素相同,则这个就是托普利茨矩阵,否则就不是。所以只需要判断矩阵的每个元素与它左上角的元素是否相同。

3.代码:

class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        for(int i=1;i<matrix.size();i++)
        {
            for(int j=1;j<matrix[i].size();j++)
            {
                if(matrix[i][j]!=matrix[i-1][j-1])
                    return false;
            }
        }
        return true;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值