网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
从网页抓取数据:Beautiful Soup
Beautiful Soup (一般写作 BS4)库使得从 HTML 网页中提取信息变得非常简单。当我们需要把非结构化或弱结构化的 HTML 转换为结构化数据的时候,就需要使用 Beautiful Soup 。用它来处理 XML 数据也是一个很好的选择,否则 XML 的可读性或许会很差。
和 HTTP 内容打交道:Requests
当需要和 HTTP 内容打交道的时候, Requests 毫无疑问是最好的标准库。当我们想要抓取 HTML 网页或连接 API 的时候,都离不开 Requests 库。同时,它也有很好的文档。
编写命令行工具:Click
当需要写一个简单的 Python 脚本作为命令行工具的时候, Click 是我最喜欢用的库。它的 API 非常直观,并且在实现时经过了深思熟虑,我们只需要记住很少的几个模式。它的文档也很优秀,这使得学习其高级特性更加容易。
对事物命名:Python Slugify
众所周知,命名是一件困难的事情。 Python Slugify 是一个非常有用的库,它可以把一个标题或描述转成一个带有特性的唯一标识符。如果你正在做一个 Web 项目,并且你想要使用对搜索引擎优化友好SEO-friendly的链接,那么,使用 Python Slugify 可以让这件事变得很容易。
和插件打交道:Pluggy
Pluggy 库相对较新,但是如果你想添加一个插件系统到现有应用中,那么使用 Pluggy 是最好也是最简单的方式。如果你使用过 pytest,那么实际上相当于已经使用过 Pluggy 了,虽然你还不知道它。
把 CSV 文件转换到 API 中:DataSette
DataSette 是一个神奇的工具,它可以很容易地把 CSV 文件转换为全特性的只读 REST JSON API,同时,不要把它和 Dataset 库混淆。Datasette 有许多特性,包括创建图表和 geo(用于创建交互式地图),并且很容易通过容器或第三方网络主机进行部署。
处理环境变量等:Envparse
如果你不想在源代码中保存 API 密钥、数据库凭证或其他敏感信息,那么你便需要解析环境变量,这时候 envparse 是最好的选择。Envparse 能够处理环境变量、ENV 文件、变量类型,甚至还可以进行预处理和后处理(例如,你想要确保变量名总是大写或小写的)。
有什么你最喜欢的用于业余项目的 Python 库不在这个列表中吗?请在评论中和我们分享。
via: https://opensource.com/article/18/9/python-libraries-side-projects
作者: Jeff Triplett 选题: lujun9972 译者: ucasFL 校对: wxy
更多Python视频、源码、资料加群683380553免费获取
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!