自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 从几个角度分析一下这波A股

另外,从这次去杠杆周期国家的应对措施的角度进行分析。我一个工科生是不可能在牛市的这个阶段中把这些事情全想清楚的,并且我也没有这么多时间去收集这么多的信息(同时奉劝大家屏蔽掉各种营销号,营销号的信息太失真了)。首先从政策和市场的角度来说,政策的短期影响是无法改变市场大势的(因为我之前只看过美股,所以可以说的不对),比如说,美联储历次降息后,股市总是在短期受到影响后便回到了原来的趋势当中去。但千万不要加杠杆,尤其这一波绝大多数重仓的都是从来没接触过股市的00后,别年纪轻轻的就负债了,大好青春真容不得这么糟蹋。

2024-10-02 20:06:19 323

原创 GhostNet

GhostNet对其中的一个特征图进行简单的运算从而生成更多相似特征图,从而可以使用更少的参数生成更多的特征图,将相似的特征图认为是彼此的Ghost。Ghost Module首先使用普通的1x1卷积对输入图片进行通道数的压缩,然后再进行深度可分离卷积(逐层卷积)得到更多的特征图,然后将不同的特征图concat到一起,组合成新的output。之后进行一次全局平均池化,然后再利用一个1x1的卷积块进行通道数的调整,获得一个1x1x1280的特征层。

2024-09-28 13:44:26 303

原创 特征提取和映射到特征空间的区别

例如,在深度学习中,神经网络的中间层可以被看作是同时进行特征提取和特征空间映射。方法:可以使用手工设计的方法(如SIFT、HOG)或自动学习的方法(如神经网络的卷积层)。方法:可以是线性变换(如PCA)或非线性变换(如核方法、深度学习中的嵌入)。定义:从原始数据中识别和提取有意义的特征或属性的过程。定义:将数据从原始空间转换到新的特征空间的过程。目的:在新的空间中,数据可能更容易被分析或处理。目的:减少数据的维度,提取最相关和有用的信息。输出:通常是一组离散的特征或特征向量。输出:数据在新空间中的表示。

2024-09-21 21:06:23 343

原创 三种不同的迁移学习

基于实例的迁移学习研究的是,如何从源领域中挑选出,对目标领域的训练有用的实例,比如对源领域的有标记数据实例进行有效的权重分配,让源域实例分布接近目标域的实例分布,从而在目标领域中建立一个分类精度较高的、可靠地学习模型。因为,迁移学习中源领域与目标领域的数据分布是不一致,所以源领域中所有有标记的数据实例不一定都对目标领域有用。戴文渊等人提出的TrAdaBoost算法就是典型的基于实例的迁移。

2024-09-16 23:14:12 326

原创 Attribute-Based Zero-Shot Learning forEncrypted Traffic Classification

该框架基于我们定义的属性语义空间,并由两个组件组成:i) 特征-属性嵌入模型,用于学习流特征和可见类中的属性之间的映射。ii) 基于 GAN 的特征生成模型 FAE-G,它利用经过训练的 FAE 模型来改进从未见过的类的分类器的泛化。1.在预训练阶段,建立一个流——属性嵌入模型来把编码流特征和属性编码到正交向量空间(希望每个样本的流特征可以编码到一个离属性嵌入向量最近的向量中)中。2.在特征生成阶段,一个基于对应属性向量生成流特征向量的基于GAN的生成器通过已知种类数据集和未知种类的属性集进行了训练。

2024-09-14 20:39:00 179

原创 Mamba中的硬件感知算法——并行关联扫描

由于从HBM读取到SRAM的输入 Δ,𝑨,𝑩,𝑪 和输出梯度的大小为 𝑂(𝐵𝐿𝑁+𝐷),并且输入梯度的大小也为 𝑂(𝐵𝐿𝑁+𝐷𝑁),因此重新计算避免了从HBM读取 𝑂(𝐵𝐿𝑁𝐷) 个元素的成本。在内核融合的过程中,为防止内存爆炸,我们不保存大小为(B,L,D,N)的的中间状态。4.与C做乘法和求和,计算得到大小为(B,L,D)的最终结果,并将最终结果写入HBM。1.将O(BLD+DN)字节的 (Δ,𝑨,𝑩,𝑪) 从慢速HBM读取到快速SRAM。2.在SRAM中离散化后,计算大小为(B,L,D,N)的。

2024-09-13 23:00:55 308

原创 MobileViT重点内容

大小为nxn(代码中是3x3)的卷积层进行局部的特征建模,然后通过一个卷积核大小为1x1的卷积层调整通道数。在unfold——transformer——fold的部分,其主要是利用CNN提取的局部特征信息来将图片(数据)分为不同的区域,这个区域的大小与卷积核的大小相关,下图是基于3×3的卷积核大小为例的。在这一部分中,unfold的主要作用就是确保后续的transformer只对每一个分块中处于同一位置的像素计算注意力值,在这个计算的过程中,我们认为每一个分块中的这个像素已经通过卷积的局部。

2024-09-01 20:51:09 256

原创 创建网站——小白教程

11.如果是大陆ECS,则需要ICP备案后才能使用。如果是海外或香港,则可以直接使用。如果没有域名,安全组那里改过以后就可以使用公网IP使用了。在这个过程中,我们需要在域名控制台,点击对应域名的解析操作。在解析设置中进行设置,其中记录值为公网IP。使用Let's Encrypt获取免费的SSL证书,并配置Nginx使用HTTPS。6.进行ICP备案(大陆地址的ECS需要备案,如果是香港或者海外的则不需要)的话,就去更改安全组入方向的内容。控制台中,将您的域名指向ECS实例的公网IP地址。

2024-09-01 20:49:37 844

原创 什么是C-way K-shot?

在训练的每个episode中,都会采样得到不同的任务(每次训练都是不同类别的组合),在这种机制下,模型能够学会不同任务中共性的部分,逐渐淡化(或者说是遗忘)不同任务的独特部分。通过这种方法实现的元学习,可以在面对新的,从未见过的任务时,也能够实现较好的分类。在训练过程中,在训练集中随机抽取C个类别,每个类别包含K个样本,这C个类别与C×K个样本被称为模型的。与训练不完全相同,few-shot learning 的测试是在与训练时使用的类别不同的类别上构建support set和query set。

2024-09-01 20:45:05 347

原创 第一性原理小记——从事物的本源出发

在解决问题的过程中,我们需要深入探究问题的根源,从根源上寻找解决方案,这样才能真正解决问题,并避免产生新的问题,最复杂的问题往往有着最简单的方案!所以解决问题的方案可能在问题表面的上一层或者更上一层,客户一般不知道自己的问题到底是什么。用简单的方案来解决高阶问题(表面问题更上一层的问题,甚至更上一层的问题)通常会有很不错的收益。最应该解决的问题并不是表面问题 | 朋友来杭州开会,线下面基的同时顺便听了下会议,听了很多感觉没啥用的,唯有一条主讲人提到的爱因斯坦的名言激起了我的兴趣。

2024-09-01 20:43:51 184

原创 从零开始使用docker

5.如果要为自己的环境和代码创建镜像,需要提前准备好对应的文件夹和文件以及Dockerfile,然后写好Dockerfile后,就可以运行docker build -t your_image_name:tag .了。最好不要用Windows下载docker,Windows系统下的docker很不完善,主要还是以liunx系统为例。4.登录到docker仓库:docker login --username=你的账号。docker login --username=你的用户名你的镜像Registry地址。

2024-09-01 20:41:49 598

原创 Repvit:一种名为vit的CNN模型

为了缓解这一瓶颈,最近的一些工作采用了更窄的FFN,例如LV-ViT的expansion ratio为3,LeViT的expansion ratio为2。在较小的expansion ratio下,我们可以增加网络的宽度来弥补参数量的下降,作者将每个stage的通道数翻倍,分别为48、96、192、384。例如,在处理图像分类任务时,可能需要更多的Token mixer来捕捉复杂的空间特征,而在处理某些特征分类任务时,可能需要更多的Channel mixer来处理通道之间的特征交互。

2024-08-26 13:57:51 1029

原创 从经济学原理中浅探经济发展趋势

因为社会整体支出也可以理解为整体的收入,你支出的越多,对应的人就赚的越多。但是,随着债务偿还额的不断增大,债务偿还的增长速度会在某一个时间节点超过收入的增长速度,这导致这个人的支出减少,更进一步的导致其他人的收入减少。收入的减少导致信用度的降低,进而导致借到信贷的减少,而偿还额的升高,又会导致支出的进一步减少,从而走进了一个恶性循环。前面提到的三种手段(减少个人、企业、政府支出,违约或债务重组,财富的再分配)都是紧缩性的手段,而在信贷消失,人们觉得自己没钱的时候,印钱可以缓解市场上缺钱的问题。

2024-08-24 23:02:00 572 1

原创 以太网的mac协议和基于点对点的ppp协议的区别和使用场景

以太网的MAC协议是在数据链路层实现的,它负责在同一网络中的主机之间的数据传输。PPP协议是在网络层实现的,它负责在两台计算机之间建立点对点链接。

2023-01-14 08:42:18 1280

原创 使用 Vue.js 和 Spring Boot 构建校招日记系统的步骤

Vue.js 是一个 JavaScript 框架,用于构建用户界面。它具有轻量级、灵活和可扩展性等特点,可以构建单页面应用程序和渐进式网页应用程序。Spring Boot 是一个用于构建微服务的框架。它是 Spring 框架的一个快速应用程序开发模板,可以自动配置应用程序并简化开发过程。

2023-01-14 08:40:22 257

原创 主从分布式怎么写

主从分布式系统是一种常用的分布式系统模型,主要用于提高系统的可用性和可扩展性。

2023-01-14 08:39:17 206

原创 分布式集群如何保证线程安全?

在分布式集群中,由于数据和资源分布在不同的机器上,因此需要采取特殊的措施来保证线程安全。

2023-01-14 08:30:04 637

原创 如何从零开始做游戏

要做一个从零开始的小游戏,首先需要确定游戏类型和开发工具。其次,需要设计游戏的基本架构和流程。然后,开始编写代码并进行测试。最后,可以进行优化和完善。

2023-01-14 08:27:09 989

原创 如何进行算法芯片测试

算法芯片是一种专门用于执行特定算法的硬件, 可以在硬件层面上加速算法的执行, 提高算法的性能。 它可以是一个独立的芯片, 或者是一个芯片组, 可以与其它芯片一起工作。

2023-01-12 18:07:09 469

原创 穷人为什么穷

在我们的日常生活中,很多人都有过贫穷的经历或者见识,但是贫穷却是一个很难解决的问题。有人认为,贫穷是由于个人的懒惰和没有规划所造成的,而有些人则认为,贫穷是由于社会的不平等和政治的不公正所造成的。那么,到底是什么原因导致了贫穷呢?

2023-01-10 15:48:38 128

原创 Python库安装常见问题汇总

Python库安装常见问题汇总

2022-11-12 11:36:19 603

原创 使用SPSS进行指数平滑方法进行序列平稳化或预测时常见问题的解决方法

使用SPSS进行指数平滑方法进行序列平稳化或预测时常见问题的解决方法

2022-11-09 22:05:35 3572

原创 分布式基础——GFS(Google file system)

分布式系统基础知识,gfs谷歌经典架构

2022-11-03 11:37:50 1593 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除