优化问题.

无约束优化问题

min ⁡ f ( x ) \min\quad f(x) minf(x)

max ⁡ f ( x ) \max\quad f(x) maxf(x)等价于 min ⁡ − f ( x ) \min\quad -f(x) minf(x)

等式约束优化问题

原问题
min ⁡ f ( x ) s . t . g ( x ) = 0 \min\quad f(x)\\s.t.\quad g(x)=0 minf(x)s.t.g(x)=0
拉格朗日函数 L ( x , λ ) = f ( x ) + λ g ( x ) L(x,\lambda)=f(x)+\lambda g(x) L(x,λ)=f(x)+λg(x)
等式约束优化问题转化为无约束优化问题
min ⁡ x , λ L ( x , λ ) \mathop{\min}\limits_{x,\lambda}\quad L(x,\lambda) x,λminL(x,λ)
对偶函数 g ( λ ) = inf ⁡ x L ( x , λ ) g(\lambda)=\mathop{\inf}\limits_{x}L(x,\lambda) g(λ)=xinfL(x,λ)
对偶问题 max ⁡ g ( λ ) \max g(\lambda) maxg(λ)
最优解必要条件,偏导为零
∇ x L = ∇ f ( x ) + λ ∇ g ( x ) = 0 \nabla_xL=\nabla f(x)+\lambda\nabla g(x)=0 xL=f(x)+λg(x)=0
∇ λ L = g ( x ) = 0 \nabla_\lambda L=g(x)=0 λL=g(x)=0
第一式为定常方程,第二式为约束条件,解得驻点 x ∗ x^* x 和y的值

原始问题与对偶问题关系
L ( x ∗ , λ ) ≤ L ( x ∗ , λ ∗ ) ≤ L ( x , λ ∗ ) L(x^*,\lambda)\le L(x^*,\lambda^*)\le L(x,\lambda^*) L(x,λ)L(x,λ)L(x,λ)
x ∗ , λ ∗ x^*,\lambda^* x,λ分别是原问题与对偶问题最优解

不等式约束优化问题

min ⁡ f ( x ) s . t . g ( x ) ≤ 0 \min\quad f(x)\\s.t.\quad g(x)\le0 minf(x)s.t.g(x)0

可行域 R f e a s i b l e = { x ∈ R n ∣ g ( x ) ≤ 0 } R_{feasible}=\{x\in R^n|g(x)\le 0\} Rfeasible={xRng(x)0}

(1) g ( x ) = 0 g(x)=0 g(x)=0,最优解落在 R f e a s i b l e R_{feasible} Rfeasible边界,约束有效,称为边界解。约束不等式变为等式,退化为等式约束问题,驻点 x ∗ x^* x满足 ∇ x L = ∇ f ( x ) + λ ∇ g ( x ) = 0 \nabla_xL=\nabla f(x)+\lambda\nabla g(x)=0 xL=f(x)+λg(x)=0
∇ f ( x ) ∈ s p a n ∇ g ( x ) \nabla f(x)\in span\nabla g(x) f(x)spang(x)
因为要最小化 f ( x ) f(x) f(x), ∇ f ( x ) \nabla f(x) f(x)应指向可行域 R f e a s i b l e R_{feasible} Rfeasible内部,但 ∇ g ( x ) \nabla g(x) g(x)指向可行域外部(即 g ( x ) > 0 g(x)>0 g(x)>0,因为约束条件 g ( x ) ≤ 0 g(x)\le 0 g(x)0),因此 λ ≥ 0 \lambda\ge 0 λ0,称为对偶可行性。

(2) g ( x ) < 0 g(x)<0 g(x)<0,最优解落在 R f e a s i b l e R_{feasible} Rfeasible内部,约束无效,称为内部解。此时,不等式约束优化问题退化为无约束问题,驻点 x ∗ x^* x满足 ∇ f ( x ) = 0 \nabla f(x)=0 f(x)=0 λ = 0 \lambda=0 λ=0

无论内部解还是边界解, λ g ( x ) = 0 \lambda g(x)=0 λg(x)=0恒成立,称为互补可行性。

KKT(Karush-Kuhn-Tucker)条件

KKT条件的使用前提是约束资格条件,是局部最小值的必要条件;对凸优化问题而言,是局部最小值的充要条件。
KKT条件包括定常方程,原始可行性,对偶可行性以及互补可行性,即
∇ x L = ∇ f ( x ) + λ ∇ g ( x ) = 0 g ( x ) ≤ 0 λ ≥ 0 λ g ( x ) = 0 \nabla_xL=\nabla f(x)+\lambda\nabla g(x)=0\\ g(x)\le0\\\lambda\ge 0\\\lambda g(x)=0 xL=f(x)+λg(x)=0g(x)0λ0λg(x)=0

推广

优化问题

对原始问题
min ⁡ f ( x ) s . t . g j ( x ) = 0 , j = 1 , ⋅ ⋅ ⋅ , m , h k ( x ) ≤ 0 , k = 1 , ⋅ ⋅ ⋅ , p . \min\quad f(x)\\s.t.\quad g_j(x)=0,j=1,···,m,\\\quad\quad h_k(x)\le0,k=1,···,p. minf(x)s.t.gj(x)=0,j=1,⋅⋅⋅,m,hk(x)0,k=1,⋅⋅⋅,p.
拉格朗日函数 L ( x , λ , μ ) = f ( x ) + ∑ j = 1 m λ g j ( x ) + ∑ k = 1 p μ h k ( x ) L(x,\lambda,\mu)=f(x)+\sum_{j=1}^{m}\lambda g_j(x)+\sum_{k=1}^{p}\mu h_k(x) L(x,λ,μ)=f(x)+j=1mλgj(x)+k=1pμhk(x)

KKT(Karush-Kuhn-Tucker)条件

KKT条件包括
∇ x L = 0 g j ( x ) = 0 h k ( x ) ≤ 0 μ k ≥ 0 λ g ( x ) = 0 \nabla_xL=0\\ g_j(x)=0\\ h_k(x)\le0\\ \mu_k\ge 0\\\lambda g(x)=0 xL=0gj(x)=0hk(x)0μk0λg(x)=0

对偶问题及其与原始问题的关系

原始问题

构造关于 x x x的函数
θ P ( x ) = max ⁡ λ , μ , μ k ≥ 0 L ( x , λ , μ ) = { f ( x ) , x 满足约束条件 + ∞ , 否则 \theta_P(x)=\max_{\lambda ,\mu,\mu_k\ge 0}L(x,\lambda,\mu)=\begin{cases}f(x),&x满足约束条件\\+\infty,&否则\end{cases} θP(x)=maxλ,μ,μk0L(x,λ,μ)={f(x),+,x满足约束条件否则
极小化问题
min ⁡ x θ P ( x ) = min ⁡ x max ⁡ λ , μ , μ k ≥ 0 L ( x , λ , μ ) \min_x\theta_P(x)=\min_x\max_{\lambda ,\mu,\mu_k\ge 0}L(x,\lambda,\mu) xminθP(x)=xminλ,μ,μk0maxL(x,λ,μ)
与原始最优化问题等价
min ⁡ x max ⁡ λ , μ , μ k ≥ 0 L ( x , λ , μ ) \min_x\max_{\lambda ,\mu,\mu_k\ge 0}L(x,\lambda,\mu) minxmaxλ,μ,μk0L(x,λ,μ)称为广义拉格朗日函数的极小极大问题
p ∗ = min ⁡ x θ P ( x ) p^*=\min_x\theta_P(x) p=minxθP(x)称为原始问题最优解

对偶问题

类似的,构造关于 λ , μ \lambda ,\mu λ,μ的函数
θ D ( λ , μ ) = min ⁡ x L ( x , λ , μ ) \theta_D(\lambda ,\mu)=\min_{x}L(x,\lambda,\mu) θD(λ,μ)=minxL(x,λ,μ)
则极大化问题
max ⁡ λ , μ , μ k ≥ 0 θ D ( λ , μ ) = max ⁡ λ , μ , μ k ≥ 0 min ⁡ x L ( x , λ , μ ) \max_{\lambda ,\mu,\mu_k\ge 0}\theta_D(\lambda ,\mu)=\max_{\lambda ,\mu,\mu_k\ge 0}\min_xL(x,\lambda,\mu) λ,μ,μk0maxθD(λ,μ)=λ,μ,μk0maxxminL(x,λ,μ)
称为广义拉格朗日函数的极大极小问题
增加约束 μ k ≥ 0 \mu_k\ge 0 μk0
max ⁡ λ , μ , μ k ≥ 0 θ D ( λ , μ ) = max ⁡ λ , μ , μ k ≥ 0 min ⁡ x L ( x , λ , μ ) s . t . μ k ≥ 0 , k = 1 , … k . \max_{\lambda ,\mu,\mu_k\ge 0}\theta_D(\lambda ,\mu)=\max_{\lambda ,\mu,\mu_k\ge 0}\min_xL(x,\lambda,\mu)\\s.t.\quad \mu_k\ge 0,k=1,\dots k. λ,μ,μk0maxθD(λ,μ)=λ,μ,μk0maxxminL(x,λ,μ)s.t.μk0,k=1,k.称为原始问题的对偶问题
d ∗ = max ⁡ λ , μ , μ k ≥ 0 θ D ( λ , μ ) d^*=\max_{\lambda ,\mu,\mu_k\ge 0}\theta_D(\lambda ,\mu) d=maxλ,μ,μk0θD(λ,μ)称为对偶问题最优解

对偶问题与原始问题的关系

弱对偶性
d ∗ = max ⁡ λ , μ , μ k ≥ 0 min ⁡ x L ( x , λ , μ ) ≤ min ⁡ x max ⁡ λ , μ , μ k ≥ 0 L ( x , λ , μ ) = p ∗ d^*=\max_{\lambda ,\mu,\mu_k\ge 0}\min_xL(x,\lambda,\mu)\le\min_x\max_{\lambda ,\mu,\mu_k\ge 0}L(x,\lambda,\mu)=p^* d=λ,μ,μk0maxxminL(x,λ,μ)xminλ,μ,μk0maxL(x,λ,μ)=p
强对偶性
d ∗ = p ∗ d^*=p^* d=p
强对偶性的前提是KKT条件或Slater条件

  • 17
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值