1.问题描述
假定我们正在设计一个程序,实现英语文本到法语的翻译。对英语文本中出现的每个单词,我们需要查找对应的法语单词。为了实现这些查找操作,可以创建一棵二叉搜索树,将n个英语单词作为关键字,对应的法语单词作为关联数据。由于文本中的每个单词都要进行搜索,我们希望花费在搜索上的总时间尽量少。
通过红黑树或其他平衡搜索树结构,我们可以假定每次搜索时间为O(lgn) 。但由于单词出现的频率是不同的,像“the”这种频繁使用的单词有可能位于搜索树中远离根的位置上,而像“machicolation”这种很少使用的单词可能位于靠近根的位置上。这样的结构会减慢翻译的速度,因为二叉树搜索树中搜索一个关键字的权重是深度+1。我们希望文本中频繁出现的单词被置于靠近根的位置。在给定单词出现频率的前提下,我们应该如何组织一棵二叉搜索树,使得所有搜索操作访问的结点总数最少呢?
这个问题称为最优二叉搜索树(optimal binary search tree)问题。
2.搜索过程:
从根结点开始,如果根为空,则搜索不成功;否则使用待搜索值与根结点比 较,如果待搜索值等于根结点关键字,则搜索成功返回,如果小于根结点,则向左子树搜索;如果大于根结点