推荐系统公平性指标——DP和EO的区别

1. 人口均衡DP和机会均等EO的区别

       人口均衡DP(Demographic Parity)通常用于确保算法的输出不会偏向或歧视特定人群,DP强制要求不同组的预测结果相似,它会忽略用户的自然偏好差异。机会均等EO(Equality of Opportunity)的提出是为了解决这一局限性,它会关注用户的自然偏好差异。具体来说,EO关注的是在不同的用户群体中,实现相似的预测结果,而不是简单地强调整体上的平等性。

2.人口均衡DP忽略用户自然偏好举例

前提:

         用户群体A更倾向于购买运动鞋和健身器材。

         用户群体B更喜欢购买家居用品和厨房电器。

对于以上情况,仅使用DP方法进行推荐,由于DP强制要求不同组的预测结果相似,可能会导致以下情况发生:

        对于用户群体A,他们被推荐了大量家居用品,这与他们的偏好相悖,导致购买率下降。

        对于用户群体B,他们则被推荐了许多运动鞋和健身器材,同样也无法吸引他们的兴趣。

3.机会均等EO基于用户真实偏好举例

       例如,在贷款审批时如果只使用DP,那么模型只关注整体上的平等性,那么它可能会将所有申请人都纳入同一个审批标准中,导致对于不同群体的申请人结果不公平。

       而采用EO的方法,模型会更加关注不同用户群体之间的差异,力求在不同群体中实现相似的预测结果。举例来说,对于不同种族、不同收入水平或不同地区的申请人,模型将会根据他们的特定情况和偏好进行预测,并尽量使得不同群体的贷款获批概率更加接近和相似,而不是简单地以整体数据为依据进行审批决策。这样可以更好地保障不同群体的平等机会,避免因为群体差异而造成不公平现象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值