- 博客(37)
- 收藏
- 关注
原创 利用嵌入式软传感器和递归神经网络实现软机器人感知
本文提出了一种利用嵌入式软传感器和递归神经网络实现软机器人本体感知的创新方法。针对传统固态传感器难以捕捉软体机器人高维变形的问题,研究团队受生物感知系统启发,开发了一个集成冗余非结构化传感器拓扑、视觉运动捕捉系统和机器学习算法的建模框架。实验证明,该系统能够实时建模软体执行器的运动学特性,有效克服传感器非线性与漂移影响,并能估计机器人与外部物体交互时的作用力。该方法突破了软体机器人感知建模的技术瓶颈,为安全人机交互、可穿戴设备等应用提供了重要技术支持。
2025-06-03 12:08:24
753
原创 yocto5.2开发任务手册-7 升级配方
本文介绍了在 Yocto 项目中升级配方的三种方法:使用自动升级助手 (AUH)、devtool upgrade 工具以及手动编辑配方。AUH 是一种自动化工具,能够根据上游发布的新版本自动生成配方升级,并支持批量更新、构建测试和结果通知。devtool upgrade 则提供半自动化的升级方式,适用于需要手动解决冲突或更精细控制升级过程的场景。手动编辑配方则提供了最大的灵活性,但需要开发者自行处理所有升级细节。文章还详细说明了如何配置和使用 AUH,包括设置开发环境、配置 Git、创建专用构建目录以及编辑
2025-05-16 18:20:13
961
原创 Yocto Project 快速构建
本文介绍了如何使用 Yocto Project 快速构建嵌入式操作系统镜像。首先,确保构建主机满足硬件和软件要求,包括至少 90 GB 磁盘空间、8 GB RAM 和受支持的 Linux 发行版。接着,安装必要的主机软件包,并使用 Git 克隆 Poky 仓库。通过选择特定版本的分支,初始化构建环境并运行构建命令,最终生成完整的 Linux 发行版镜像。文中还提供了关于网络代理设置和构建环境配置的注意事项,帮助用户顺利完成构建过程。
2025-05-16 18:18:12
1301
原创 yocto5.2开发任务手册-3 了解和创建层
本文介绍了如何在OpenEmbedded构建系统中创建和管理层(Layer)。层用于隔离不同类型的定制化元数据,便于维护和扩展。创建层的步骤包括:检查现有层以避免重复、创建目录并遵循命名约定、创建层配置文件(layer.conf)以定义层的元数据、根据层类型添加内容(如机器配置、发行版配置或配方文件),以及可选地进行兼容性测试。文章还提供了创建层时的最佳实践,如避免覆盖完整配方、合理使用追加文件(.bbappend)和构建层结构,以确保层的可维护性和对其他构建的影响最小化。
2025-05-15 15:30:29
763
原创 EdgeShard:通过协作边缘计算实现高效的 LLM 推理
EdgeShard 提出了一种通过协作边缘计算实现高效大语言模型(LLM)推理的框架。当前 LLM 主要依赖云计算,导致延迟高、带宽成本大和隐私问题。边缘计算通过在靠近数据源的边缘设备上部署 LLM 来解决这些问题,但资源受限和网络不稳定是主要挑战。EdgeShard 将 LLM 划分为多个分片,并部署在分布式边缘设备和云服务器上,通过自适应设备选择和模型分区优化推理性能。实验表明,EdgeShard 在 Llama2 模型上实现了高达 50% 的延迟降低和 2 倍的吞吐量提升,显著优于传统方法。该框架为边
2025-05-15 15:26:41
1316
5
原创 新一代动态可重构处理器技术,用于加速嵌入式 AI 应用
本文介绍了一种新型动态可重构处理器技术——STP3-AI,用于加速嵌入式系统中的深度神经网络(DNN)处理。STP3-AI集成了第三代动态可重构处理器(DRP)、专用的AI乘法累加器(AI-MAC)和直接内存访问(DMA)引擎。该处理器支持16位浮点运算和二值化DNN推理计算,具有高度通用性、高性能和低延迟的特点。AI-MAC单元通过三种模式(FP16、二进制权重和二进制网络)优化了内存占用和吞吐量。实验结果表明,STP3-AI在处理卷积层和全连接层时表现出色,有效性能接近峰值。该架构具备高度可编程性,能够
2025-05-13 12:30:05
1197
原创 The Deep Learning Compiler: A Comprehensive Survey (深度学习编译器:全面调查)
《深度学习编译器:全面调查》一文由Mingzhen Li等人撰写,发表于2021年3月1日的《IEEE Transactions on Parallel and Distributed Systems》。该文章系统性地回顾了深度学习编译器的发展现状,探讨了其在优化深度学习模型部署和性能提升中的关键作用。文章详细分析了现有深度学习编译器的架构、优化技术及其在不同硬件平台上的应用,并指出了当前面临的挑战和未来的研究方向。这项调查为研究人员和开发者提供了宝贵的参考,有助于推动深度学习编译器技术的进一步发展。
2025-05-13 12:26:41
1623
原创 1 bit AI 框架:Part 1.1,CPU 上的快速无损 BitNet b1.58 推理
本文介绍了1-bit AI框架中的BitNet b1.58模型在CPU上的快速无损推理方法。作者团队包括Jinheng Wang、Hansong Zhou、Ting Song等,研究发表于2024年10月23日。BitNet b1.58通过1-bit量化技术,显著降低了模型的计算和存储需求,同时保持了推理的精度。该方法在CPU上实现了高效的推理速度,适用于资源受限的设备。研究为1-bit AI技术的实际应用提供了重要参考,相关成果已发布在arXiv平台上,DOI为10.48550/arXiv.2410.16
2025-05-09 15:10:37
1084
原创 边缘大型语言模型综述:设计、执行和应用
文章《Edge 大型语言模型综述:设计、执行和应用》由Yue Zheng等人撰写,发表于2025年8月31日的《ACM Computing Surveys》期刊。该期刊影响因子为23.8,属于SCI Q1分区和中科院工程技术1区。文章全面探讨了边缘计算环境下大型语言模型的设计、执行及其应用。通过分析现有技术和未来趋势,作者提出了在资源受限的边缘设备上优化和部署大型语言模型的方法,并展示了其在智能设备、物联网等领域的实际应用。该研究为边缘计算与人工智能的融合提供了重要参考,推动了相关技术的发展。
2025-05-09 14:59:49
1267
原创 Yocto Project概念(一)
原文链接:https://docs.yoctoproject.org/overview-manual/concepts.html#
2025-05-07 12:47:31
1345
原创 Yocto Project 概述和概念手册
Yocto项目是一个开源协作项目,它帮助开发者创建定制的基于Linux的系统。这些系统专为嵌入式产品设计,无论产品的硬件架构如何。Yocto项目提供了一套灵活的工具集和一个开发环境,使全球的嵌入式设备开发者能够通过共享技术、软件堆栈、配置以及创建这些定制Linux镜像的最佳实践来进行协作。全球成千上万的开发者发现,Yocto项目在系统和应用程序开发、存档和管理方面都具有优势,还能在速度、占用空间和内存利用等方面进行定制。在交付嵌入式软件堆栈方面,该项目是一个行业标准。
2025-04-23 16:54:14
820
原创 EDGE-LLM: Enabling Efficient Large Language Model Adaptation on Edge Devices via Layerwise Unified
受第2.3节中所发现的机会的启发,我们接下来介绍所提出的Edge-LLM框架的算法设计,以在有限的计算和内存开销下,实现有效且高效的大语言模型适配。如图2所示,我们提出的Edge-LLM微调算法整合了两个关键促成因素,每个因素都利用了上述减少计算和内存开销的机会之一。具体来说:(1)为了降低计算开销,我们提出了分层统一压缩(LUC)技术,以减少目标大语言模型的冗余。这项技术的灵感来源于我们对大语言模型在不同层对量化和剪枝敏感度存在差异的实证观察。
2025-04-18 22:36:34
792
原创 端侧大模型综述On-Device Language Models: A Comprehensive Review
大型语言模型 (LLM) 的出现彻底改变了自然语言处理应用程序,由于减少延迟、数据本地化和个性化用户体验等原因,在边缘设备上运行 LLM 变得越来越有吸引力。本综述探讨了在资源受限的设备上部署计算成本高昂的 LLM 所面临的挑战,并探讨了跨多个领域的创新解决方案。本文研究了设备端语言模型的开发、其高效架构(包括参数共享和模块化设计)以及最先进的压缩技术,如量化、修剪和知识蒸馏。分析了硬件加速策略和协作边缘云部署方法,突出了性能和资源利用率之间的复杂平衡。
2025-04-17 16:51:46
1537
原创 数字孪生建模(陶飞)文献综述笔记
本文对数字孪生建模的当前研究进行了系统研究。由于数字孪生模型忠实地反映了数字孪生建模性能,因此首先从应用领域、层次结构、学科、维度、通用性和功能的角度对数字孪生模型进行了全面而有洞察力的分析。基于对数字孪生模型的分析,根据我们之前工作中提出的数字孪生建模理论体系中的六个建模方面,对当前数字孪生建模的研究进行了分类和分析。同时,研究和总结了数字孪生建模的使能技术和工具。最后,提出了观察结果和未来的研究建议。
2025-01-14 21:04:22
2897
原创 ML-Agents:智能体(四)
使用在决策之间累积奖励。使用覆盖决策之间累积的任何先前奖励。为了确保更稳定的学习过程,任何给定奖励的幅度通常不应大于 1.0。正向奖励通常比负向奖励更有助于塑造智能体所期望的行为。过多的负向奖励可能会导致智能体无法学习任何有意义的行为。对于移动任务,通常会为向前速度设置一个较小的正奖励(0.1)。如果您希望智能体快速完成任务,那么在智能体未完成任务的每一步(-0.05)内提供小额惩罚通常会很有帮助。在这种情况下,当智能体达成目标时,任务的完成也应与回合的结束相一致,此时应调用智能体上的。
2025-01-11 16:05:54
940
原创 ML-Agents:智能体(三)
Agent可以使用Discrete和/或Continuous动作。离散动作可以有多个动作分支,并且可以屏蔽某些动作以使其不会被执行。一般来说,动作越少,学习就越容易。确保将连续动作大小和离散分支大小设置为每种动作所需的数字,而不是更大,因为后者可能会干扰训练过程的效率。连续动作值应被限制在适当的范围内。提供的 PPO 模型会自动将这些值限制在 -1 和 1 之间,但第三方训练系统可能不会这样做。鉴于作者水平有限,本文可能存在不足之处,欢迎各位读者提出指导和建议,共同探讨、共同进步。
2025-01-11 16:00:08
1388
原创 ML-Agents:智能体(二)
这篇文章详细介绍了Unity ML-Agents Toolkit中智能体(Agent)的观测和传感器机制,重点讲解了如何为智能体设计有效的观测系统以支持其学习和决策。文章涵盖了多种观测方式,包括矢量观测、视觉观测、射线观测、网格观测和变数量观测,分别适用于不同的场景和需求。矢量观测通过`VectorSensor`收集数字信息,视觉观测通过相机或渲染纹理捕捉图像,射线观测通过射线投射检测环境物体,网格观测提供自上而下的2D视图,而`BufferSensor`则用于处理变数量观测。
2025-01-09 18:41:06
1577
原创 Win11+WSL2+Ubuntu24.04安装Genesis并实现正常运行
Genesis是一款由卡内基梅隆大学、马里兰大学、斯坦福大学、麻省理工学院等全球顶尖研究机构联合开发的开源生成式物理引擎。于2024年12月19日正式开源。它专为机器人、嵌入式 AI 和物理 AI 应用设计,能够模拟各种物理现象(如刚体、液体、软体等),并通过自然语言描述生成交互式 3D 场景、机器人策略和面部动画。
2025-01-09 12:02:39
2973
3
原创 ML-Agents:智能体(一)
智能体(Agent)是一个实体,它可以观察其环境,基于这些观察结果决定最佳行动方案,并在其环境中执行这些行动。可以在Unity中通过继承Agent类来创建智能体。创建能够成功学习的智能体最重要的点是智能体收集的观察结果,以及为估计智能体完成其任务的当前状态值而分配的奖励。智能体将其观察结果传递给其策略。然后,策略做出决策并将所选操作传回智能体。您的智能体代码必须执行该操作,例如,将智能体移向一个方向或另一个方向。为了,您的智能体必须计算每个操作的奖励值。奖励用于发现最佳决策策略。Policy。
2025-01-08 19:43:01
835
原创 ML-Agents:训练配置文件(三)
这篇文章是关于Unity ML-Agents Toolkit中训练配置文件的详细指南。文章主要介绍了如何设置和调整各种奖励信号,包括外在奖励、好奇心内在奖励、GAIL内在奖励和RND内在奖励等。每种奖励信号都有其特定的参数和典型范围,帮助开发者根据不同的训练需求进行配置。此外,文章还讨论了行为克隆、使用循环神经网络的记忆增强Agent以及自我博弈等高级训练技巧。通过这些详细的配置说明,开发者可以更好地设计和优化他们的强化学习模型,以实现更高效的训练和更优的性能表现。
2025-01-08 19:20:37
1147
原创 ML-Agents:训练配置文件(二)
本文是Unity ML-Agents Toolkit训练配置文件的第二部分,主要介绍了特定训练器的配置选项。对于PPO训练器,文章讨论了熵正则化强度、策略演化速度、GAE正则化参数、梯度下降遍历次数和是否共享价值函数网络等配置。对于SAC训练器,涉及了缓冲区初始化步数、初始熵系数、是否保存回放缓冲区、目标网络更新速度和每步更新次数等设置。MA-POCA训练器与PPO共享配置,没有额外参数。文章强调了这些配置对训练稳定性和效率的影响,并鼓励读者提出建议以促进共同进步。
2024-12-26 17:49:52
1141
原创 ML-Agents:训练配置文件(一)
本文是关于Unity ML-Agents Toolkit中训练配置文件的官方文档翻译。文章介绍了训练器类型选择(PPO、SAC、POCA)和通用训练配置,包括训练统计数据生成频率、时间范围、总训练步数等。详细讨论了模型检查点保存、初始化路径、线程处理和学习率等超参数。还涉及了批处理大小、缓冲区大小和学习率调度等特定于训练器的设置。最后,探讨了网络设置,包括隐藏层单元数、层数、观测归一化和视觉编码类型。文章强调了这些配置对训练过程和结果的影响,并鼓励读者提出建议以共同进步。
2024-12-25 21:56:43
1081
原创 ML-Agents 概述(二)
简单总结一下:ML-Agents Toolkit 使 Unity 中构建的游戏和模拟可以作为训练智能Agent的平台。它旨在支持各种各样的训练模式和场景,并配备了多种功能,使研究人员和开发人员能够利用(并增强)Unity 中的机器学习。有关使用简单场景运行 ML-Agents 的演练,请查看入门指南。有关创建您自己的学习环境的“Hello World”介绍,请查看创建新的学习环境页面。要了解此工具包中提供的更复杂的示例环境,请查看示例环境页面。有关各种可用训练选项的更多信息,请查看。
2024-12-24 09:32:41
1398
原创 ML-Agents 概述(一)
总的来说,我们提供了 3 种训练方法:BC、GAIL 和 RL(PPO 或 SAC),这些方法可以单独使用,也可以结合使用。BC 可以单独使用,也可以作为 GAIL 和(或) RL 之前的预训练步骤GAIL 可以与外部奖励一起使用,也可以单独使用RL 可以单独使用(PPO 或 SAC),也可以与 BC 和(或) GAIL 结合使用。利用 BC 或 GAIL 需要记录演示作为训练算法的输入。鉴于作者水平有限,本文可能存在不足之处,欢迎各位读者提出指导和建议,共同探讨、共同进步。幸存者偏差。
2024-12-24 09:31:59
1472
原创 Soft Q-learning:Learning Diverse Skills via Maximum Entropy Deep Reinforcement Learning
Haoran Tang 和 Tuomas Haarnoja 10月 6, 2017深度强化学习(deep RL)在许多任务中都取得了成功,例如从原始像素玩视频游戏(Mnih et al., 2015)、玩围棋游戏(Silver et al., 2016)和模拟机器人运动(例如 Schulman et al., 2015)。标准的DRL 算法旨在掌握解决给定任务的单一方法,通常是第一种似乎效果很好的方法。因此,训练对环境中的随机性、策略的初始化和算法实现很敏感。
2024-12-22 21:30:50
1252
原创 ML-Agents:设计学习环境
本页面提供了关于如何设计学习环境的一般性建议,此外还概述了与设置场景和模拟环境(而非设计场景内的Agent)相关的ML-Agents Unity SDK的相关方面。我们有一个专门的页面用于“”,其中包括如何对观测值、动作和奖励进行定义,为多Agent场景定义团队以及记录Agent的演示以用于模仿学习。为了帮助您全面了解ML-Agents工具包提供的所有功能,我们建议您浏览我们的。此外,我们的也是一个很好的资源,因为它们提供了几乎所有功能的示例使用方法。
2024-12-22 16:23:58
831
原创 ML-Agents 概述
总的来说,我们提供了 3 种训练方法:BC、GAIL 和 RL(PPO 或 SAC),这些方法可以单独使用,也可以结合使用。BC 可以单独使用,也可以作为 GAIL 和(或) RL 之前的预训练步骤GAIL 可以与外部奖励一起使用,也可以单独使用RL 可以单独使用(PPO 或 SAC),也可以与 BC 和(或) GAIL 结合使用。利用 BC 或 GAIL 需要记录演示作为训练算法的输入。
2024-12-19 11:12:12
1569
原创 Unity ML-Agents Gym Wrapper
机器学习研究人员与模拟环境交互的一种常见方式是通过 OpenAI 提供的名为gym的。有关 gym 界面的更多信息,请参阅。我们提供了一个 gym 封装器以及将其与利用 gym 的现有机器学习算法结合使用的说明。我们的封装器在我们的类之上提供了接口,这是通过 Python 与 Unity 环境交互的默认方式。
2024-12-16 12:14:11
830
原创 训练 ML-Agent
有关强化学习、模仿学习和所有 ML-Agents Toolkit 中的培训场景、方法和选项,请参阅。一旦学习环境创建完毕并准备就绪,接下来的步骤就是启动训练运行。ML-Agents工具包中的训练是由一个专门的Python包驱动的,该包名为mlagents。该包提供了一个命令,是所有训练工作流(例如强化学习、模仿学习、课程学习)的唯一入口点。其实现可在中找到。
2024-12-01 19:30:05
1102
原创 Unity ML-Agents Python 接口
Python 软件包是的一部分。它提供了三种Python API,允许直接与Unity游戏引擎进行交互: - 单个Agent API(Gym API) - 类似于Gym的多Agent API(PettingZoo API) - 底层API(LLAPI)LLAPI 在mlagents的训练器实现中被使用。可以独立于mlagents用于 Python 通信。
2024-11-28 17:12:32
477
原创 ML-Agents:入门指南
本指南介绍了在 Unity 中打开我们的一个、在其中训练Agent以及将训练好的模型嵌入到 Unity 环境中的端到端流程。阅读本教程后,您应该能够训练任何示例环境。如果您不熟悉,请查看我们的页面以获取有用的提示。此外,如果您不熟悉机器学习,请查看我们的页面以获取简要概述和有用的提示。在本指南中,我们将使用环境,其中包含许多立方体和球(它们都是彼此的副本)。每个立方体都试图通过水平或垂直旋转来防止其球掉落。在此环境中,立方体是一个,它会在平衡球的每一步中获得奖励。Agent也会因掉球而受到惩罚。
2024-11-24 15:18:24
2161
原创 安装 - Unity ML-Agents Toolkit
本文提供了Unity ML-Agents Toolkit的安装指南。ML-Agents Toolkit包含Unity软件包、扩展包和两个Python包,用于在Unity中训练和模拟机器学习行为。安装步骤包括:安装Unity 2023.2或更高版本、Python 3.10.12、克隆ML-Agents Toolkit存储库以及安装相应的Unity和Python包。文章还提供了Conda环境设置、克隆存储库、本地开发安装和Python包安装的详细指南。最后,提供了入门指南和帮助资源链接,以供用户进一步学习和解决
2024-11-23 13:49:52
1984
1
原创 ML-Agents:创造新的学习环境
为您的Agent创建一个生存环境。环境可以是包含几个对象的简单物理模拟,也可以是整个游戏或生态系统。实现您的 Agent 子类。Agent 子类定义 Agent 用于观察其环境、执行指定操作以及计算用于强化训练的奖励的代码。您还可以实现可选方法,以便在 Agent 完成或未能完成任务时将其重置。将您的 Agent 子类添加到适当的GameObjects (游戏对象),通常是场景中代表模拟中的 Agent 的对象。注意:如果您不熟悉 Unity, 且本教程中没有充分解释编辑器任务,请参阅。
2024-11-21 18:16:42
1367
1
原创 Embedded shape morphing for morphologically adaptive robots(文献阅读笔记)
变形机器人可以在不同的环境中改变自己的形态以完成不同的任务,但现有的变形功能并没有嵌入机器人的身体,需要笨重的辅助设备。在这里,我们报告了一种嵌入式形状变形方案,它将形状驱动、感知和锁定全部嵌入机器人的身体中。我们使用三种变形机器人系统展示了这种嵌入式方案:1)自感知形状变形抓手,可适应物体进行自适应抓取;2)四足机器人,可变形其身体形状,以适应不同的陆地运动模式(行走、爬行或水平爬行);3)无系绳机器人,可变形其四肢形状,以适应两栖运动。
2024-06-11 18:50:23
708
原创 探索STM32与OLED显示屏:SSD1306库使用指南与实战
本文将指导您如何在STM32微控制器上使用afiskon的库来移植并操作基于SSD1306、SH1106、SH1107和SSD1309的OLED显示屏。这个库支持I2C和SPI通信协议,使得OLED显示屏的集成和显示操作变得简单高效。
2024-06-07 20:56:47
5149
11
原创 从理论到应用:揭秘鲍威尔优化方法及其实际运用
在许多工程学、人工智能和操作研究领域,我们常常需要寻求一种函数的最优解或者最小值,这背后往往涉及到多维无约束优化问题。优化算法的选择对于解的质量与求解速度有着决定性的影响。如何在没有偏导数信息的情况下,有效地寻找到多变量函数的极小值点,一直是优化领域研究的热点之一。鲍威尔(Powell)方法,作为这一领域的经典算法之一,不需要函数梯度信息,通过一系列直观的迭代搜索步骤,能够稳步地寻找到函数的局部最小值。
2024-05-03 08:24:39
1544
1
基于BP神经网络的PID控制算法-MATLAB实现
2024-05-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅