1.基本思想
假设待排序的记录存放在数组
R[1..n]
中。初始时,
R[1]
自成一个有序区,无序区为
R[2..n]
。
从
i=2
起直至
i=n
为止,依次将
R[i]
插入当前的有序区
R[1..i
−
1]
中,生成含
n
个记录的有序区。
2.(
1
)简单方法
首先在当前有序区
R[1..i
−
1]
中查找
R[i]
的正确插入位置
k(1
≤
k
≤
i
−
1)
;然后将
R[k..i
−
1]
中的记
录均后移一个位置,腾出
k
位置上的空间插入
R[i]
。
注意:若
R[i]
的关键字大于等于
R[1
..
i
−
1]
中所有记录的关键字,则
R[i]
就插入原位置。
(
2
)改进的方法
这是一种查找比较操作和记录移动操作交替进行的方法。
具体做法:将待插入记录
R[i]
的关键字从右向左依次与有序区中记录
R[j](j=i
−
1,i
−
2,
…
,1)
的关
键字进行比较:①若
R[j]
的关键字大于
R[i]
的关键字,则将
R[j]
后移一个位置;②若
R[j]
的关键字
小于或等于
R[i]
的关键字,则查找过程结束,
j+1
即为
R[i]
的插入位置。
关键字比
R[i]
的关键字大的记录均已后移,所以
j+1
的位置已经腾空,只要将
R[i]
直接插入
此位置即可完成一趟直接插入排序。
3.
算法描述如下:
算法描述如下:
void lnsertSort(SeqList R)
{ //对顺序表 R 中的记录 R[1..n]按递增序进行插入排序
int i,j;
for(i=2;i<=n;i++) //依次插入 R[2],…,R[n]
if(R[i].key<R[i-1].key){//若 R[i].key 大于等于有序区中所有的 keys,则 R[i]应在原有位置上
R[0]=R[i];j=i-1; //R[0]是哨兵,且是 R[i]的副本
do{ //从右向左在有序区 R[1..i-1]中查找 R[i]的插入位置
R[j+1]=R[j]; //将关键字大于 R[i].key 的记录后移
j-- ;
}while(R[0].key<R[j].key); //当 R[i].key≥R[j].key 时终止
R[j+1]=R[0]; //R[i]插入到正确的位置上
}//endif
}//InsertSort